Biochar derived from various materials has been investigated with regard to its ability to decrease the bioavailability of heavy metals in contaminated soils, and thus reduce their potential to enter the food chain. However, little attention has been given to the adsorption capacity of untreated crop straws, which are commonly used as a biochar feedstock, especially in soils. Hence, this study was conducted to investigate the effect of crop straws on heavy metal immobilization and subsequent heavy metal uptake by maize and ryegrass in a soil artificially polluted by Cd and Pb. Bamboo biochar, rice straw, and wheat straw were mixed into soil four weeks before the experiment, enabling them to reach equilibrium at 2% (w/w), 1% (w/w), and 1% (w/w), respectively. The results showed that soil pH for both species was significantly increased by all treatments, except when wheat straw was used for ryegrass cultivation. Soil organic carbon was only improved in the rice straw treatment and the soil alkali-hydrolyzable N content was significantly decreased with all of the amendments, which may have contributed to the lack of an effect on plant biomass. Soil available Cd was significantly lower in the rice straw treatment than in the control soil, while Pb levels clearly decreased in wheat straw treatment. The Cd concentration in shoots of maize was reduced by 50.9%, 69.5%, and 66.9% with biochar, rice straw, and wheat straw, respectively. In addition, shoot Cd accumulation was decreased by 47.3%, 67.1%, and 66.4%, respectively. Shoot Pb concentration and accumulation were only reduced with the rice straw treatment for both species. However, metal uptake in plant roots was more complex, with increased metal concentrations also detected. Overall, the direct application of crop straw could be considered a feasible way to immobilize selected metals in soil, once the long-term effects are confirmed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2016.05.031DOI Listing

Publication Analysis

Top Keywords

rice straw
20
wheat straw
16
straw treatment
16
crop straws
12
heavy metal
12
straw
10
soil
9
straws heavy
8
metal uptake
8
biochar rice
8

Similar Publications

Recombinant expression and characterization of the family 5 cellulase from in BL21-CodonPlus (DE3)-RIPL.

Biochem Biophys Rep

March 2025

Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, Vladivostok, 690922, Russia.

B. velezensis RB. IBE29 is a chitinolytic bacterium originally isolated from agricultural soil of Vietnam.

View Article and Find Full Text PDF

Ammonia oxidation plays a vital role in regulating soil nitrogen (N) cycle in agricultural soil, which is significantly influenced by different fertilizer regimes. However, there is still need to further investigate the effects of different fertilizer managements on rhizosphere soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) community in the double-cropping rice field. Therefore, the effects of different long-term (37 years) fertilizer managements on rhizosphere soil potential nitrification activity (PNA), AOA and AOB community structure, and its relationship under the double-cropping rice system in southern of China were studied in the present paper.

View Article and Find Full Text PDF

Enhanced removal of sulfonamide antibiotics in water using high-performance S-nZVI/BC derived from rice straw.

J Environ Manage

January 2025

Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China. Electronic address:

Sulfonamide antibiotics (SAs) are widely used in the biomedical field but pose an environmental risk as ecotoxic pollutants. Developing eco-friendly methods to degrade SAs into harmless compounds is crucial. In this work, biochar (BC) was prepared from rice straw via pyrolysis and used to support S-nZVI, thereby forming the S-nZVI/BC composites.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF

This work aimed to extract silica from combination of rice husk (RH and Rice straw (RS) by optimizing the ash digesting process parameters with the aid of response surface methodology (RSM). The effects of three independent ash digestion process factors like sodium hydroxide concentration (1-3 M), temperature (60-120 °C) and time (1-3 h), for silica production from the mixture of rice husk (RH) and rice straw (RS) were studied. A quadratic model was used to correlate the interaction effects of the independent variables for maximum silica production at the optimum process parameters by employing central composite design (CCD) with RSM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!