Specific gene transcription is a key biological process that underlies cell fate decision during embryonic development. The biological process is mediated by transcription factors which bind genomic regulatory regions including enhancers and promoters of cardiac constitutive genes. DNA is wrapped around histones that are subjected to chemical modifications. Modifications of histones further lead to repressed, activated or poised gene transcription, thus bringing another level of fine tuning regulation of gene transcription. Embryonic Stem cells (ES cells) recapitulate within embryoid bodies (i.e., cell aggregates) or in 2D culture the early steps of cardiac development. They provide in principle enough material for chromatin immunoprecipitation (ChIP), a technology broadly used to identify gene regulatory regions. Furthermore, human ES cells represent a human cell model of cardiogenesis. At later stages of development, mouse embryonic tissues allow for investigating specific epigenetic landscapes required for determination of cell identity. Herein, we describe protocols of ChIP, sequential ChIP followed by PCR or ChIP-sequencing using ES cells, embryoid bodies and cardiac specific embryonic regions. These protocols allow to investigating the epigenetic regulation of cardiac gene transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927755PMC
http://dx.doi.org/10.3791/53874DOI Listing

Publication Analysis

Top Keywords

gene transcription
16
epigenetic regulation
8
regulation cardiac
8
embryonic stem
8
stem cells
8
biological process
8
regulatory regions
8
embryoid bodies
8
allow investigating
8
cardiac
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!