Most bacteria use transmembrane sensors to detect a wide range of environmental stimuli. A large class of such sensors are the chemotaxis receptors used by motile bacteria to follow environmental chemical gradients. In Escherichia coli, chemotaxis receptors are known to mediate highly sensitive responses to ligands, making them potentially useful for biosensory applications. However, with only four ligand-binding chemotaxis receptors, the natural ligand spectrum of E. coli is limited. The design of novel chemoreceptors to extend the sensing capabilities of E. coli is therefore a critical aspect of chemotaxis-based biosensor development. One path for novel sensor design is to harvest the large natural diversity of chemosensory functions found in bacteria by creating hybrids that have the signaling domain from E. coli chemotaxis receptors and sensory domains from other species. In this work, we demonstrate that the E. coli receptor Tar can be successfully combined with most typical sensory domains found in chemotaxis receptors and in evolutionary-related two-component histidine kinases. We show that such functional hybrids can be generated using several different fusion points. Our work further illustrates how hybrid receptors could be used to quantitatively characterize ligand specificity of chemotaxis receptors and histidine kinases using standardized assays in E. coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.6b00053 | DOI Listing |
Cytokine
January 2025
Department of Gastroenterology, General Hospital of Ningxia Medical University (The First Clinical Medical College of Ningxia Medical University), 750004 Yinchuan, China.
Background: Sepsis is an infection-related systemic inflammation with high mortality rates. Activation of formyl peptide receptor 1 (FPR1) in immune cells can promote their chemotaxis and inflammatory response, which imbalances immune response during the process of sepsis. FPR1 blockade did diminish systemic inflammatory response during bacterial infection.
View Article and Find Full Text PDFSci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).
Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.
Cell Mol Biol Lett
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
Shiga toxin (Stx)-induced hemolytic uremic syndrome (HUS) poses a life-threatening complication for which a definitive treatment remains elusive. To exert its cytotoxic effect on renal cells, Stx must be delivered from the infected intestines to the kidney. However, the mechanism underlying Stx delivery remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!