In experimental animal research body temperature (BT) is measured for the objective determination of an animals' physiological condition. Invasive, probe-based measurements are stressful and can influence experimental outcome. Alternatively BT can be determined touch-free from the emitted heat of the organism at a single spot using infrared thermometers [1]. To get visual confirmation and find more appropriate surfaces for measurement a hand-held thermal imager was equipped with a self-made, cheap, 3D-printable close-up lens system that reproducibly creates eight-time magnified thermal images and improves sensitivity. This setup was used to establish ocular surface temperature (OST), representing the temperature of the brain-heart axis, as a touch-free alternative for measurement of BT in mice, rats, rabbits and humans.OST measurement after isoflurane exposure and myocardial infarction (MI) experiments in mice revealed high physiological relevance and sensitivity, the possibility to discriminate between MI and sham operations in one hour and even long-term outcome-predictive capabilities of OST after MI. Summarized here we present: •Self-made close-up lens for thermal imaging cameras for eight-time magnification•Establishment of OST for touch-free determination of BT in rodents and humans•Short- and long-term predictive capabilities of OST in experimental MI in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887592PMC
http://dx.doi.org/10.1016/j.mex.2016.05.002DOI Listing

Publication Analysis

Top Keywords

body temperature
8
ocular surface
8
close-up lens
8
capabilities ost
8
touch-free
4
touch-free measurement
4
measurement body
4
temperature
4
temperature close-up
4
close-up thermography
4

Similar Publications

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Outdoor microcosms, metabarcoding with next-generation sequencing of the 16S rRNA bacterial gene, total body score (TBS) and physicochemical analyses were used to monitor Mus musculus decomposition aboveground (A) and in the subsurface (S), and compared to soil-only controls (C). As determined by MaAsLin2 analysis, significant shifts in bacterial communities at 30 cm depths within the A, S and C treatments distinguished control from experimental soils, and between aboveground and subsurface deposition, demonstrating the potential for gravesoil discrimination during the first 90 days. For example, Dokdonella (p = 0.

View Article and Find Full Text PDF

The garden dormouse (Eliomys quercinus) is a fat-storing mammal that undergoes annual periods of hibernation to mitigate the effects of food scarcity, low ambient temperatures, and reduced photoperiod that characterize winter. Like other hibernating species, this animal suppresses its metabolic rate by downregulating nonessential genes and processes in order to prolong available energy stores and limit waste accumulation throughout the season. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that bind to mRNA and mediate post-transcriptional suppression, making miRNA ideal for modulating widespread changes in gene expression, including global downregulation typified by metabolic rate depression.

View Article and Find Full Text PDF

This study investigated the impact of multiple nerve block methods (local anesthesia, conventional radiofrequency thermocoagulation [CRF], and pulsed radiofrequency [PRF]) on thermoregulation. Focusing on hypothalamic function, the effects of local anesthesia, CRF, and PRF on central and peripheral temperatures were analyzed and compared. Our findings revealed that all three nerve block groups cause a decrease in central temperature, with the CRF group exhibiting the most pronounced effect.

View Article and Find Full Text PDF

A review on polysaccharide-based delivery systems for edible bioactives: pH responsive, controlled release, and emerging applications.

Int J Biol Macromol

December 2024

College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:

pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!