Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis.

Exp Ther Med

Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.

Published: June 2016

AI Article Synopsis

  • The study focused on analyzing cerebrospinal fluid (CSF) from ALS patients using advanced proteomic techniques to identify potential biomarkers and understand the disease's development.
  • The researchers discovered significant differences in the expression of 35 proteins between ALS patients and healthy controls, with 21 proteins downregulated and 14 upregulated.
  • Through western blotting, they confirmed that insulin-like growth factor II (IGF-2) was downregulated and glutamate receptor 4 (GRIA4) was upregulated in ALS patients, while leucine-rich α-2-glycoprotein 1 (LRG1) showed no significant difference between groups.

Article Abstract

The present study used comparative proteomic analysis of cerebrospinal fluid (CSF) in amyotrophic lateral sclerosis (ALS) patients in order to identify proteins that may act as diagnostic biomarkers and indicators of the pathogenesis of ALS. This analysis was performed using isobaric tags for relative and absolute quantitation (iTRAQ) technology, coupled with 2-dimensional liquid chromatography/mass spectrometry. Database for Annotation, Visualization and Integrated Discovery software was utilized for bioinformatic analysis of the data. Following this, western blotting was performed in order to examine the expression of 3 candidate proteins in ALS patients compared with healthy individuals [as a normal control (NC) group] or patients with other neurological disease (OND); these proteins were insulin-like growth factor II (IGF-2), glutamate receptor 4 (GRIA4) and leucine-rich α-2-glycoprotein 1 (LRG1). Clinical data, including gender, age, disease duration and ALS functional rating scale (ALSFRS-R) score, were also collected in the ALS patients. Multiple linear regression analysis was performed between the clinical data and the results of western blot analysis. A total of 248 distinct proteins were identified in the ALS and NC groups, amongst which a significant difference could be identified in 35 proteins; of these, 21 proteins were downregulated and 14 were upregulated. These differentially-expressed proteins were thus revealed to be associated with ALS. The western blot analysis confirmed a proportion of the data attained in the iTRAQ analysis, revealing the differential protein expression of IGF-2 and GRIA4 between the ALS and NC groups. IGF-2 was significantly downregulated in ALS patients (P=0.017) and GRIA4 was significantly upregulated (P=0.016). These results were subsequently validated in the 35-patient ALS and OND groups (P=0.002), but no significant difference was identified in LRG1 expression between these groups. GRIA4 protein expression was higher in male than female patients and was positively correlated with the ALSFRS-R score, meaning that GRIA4 expression was negatively correlated with the severity of ALS, while IGF-2 and LRG1 expression did not correlate with any clinical data. The present study thus demonstrated that GRIA4 expression levels, as a marker of severity, may be used as a reference for the timing of treatment, and that IGF-2 may serve as an effective biomarker of ALS progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4887813PMC
http://dx.doi.org/10.3892/etm.2016.3210DOI Listing

Publication Analysis

Top Keywords

als patients
16
als
12
clinical data
12
proteomic analysis
8
analysis cerebrospinal
8
cerebrospinal fluid
8
amyotrophic lateral
8
lateral sclerosis
8
analysis performed
8
data western
8

Similar Publications

Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides.

View Article and Find Full Text PDF

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Clinical features of FOSMN syndrome in Korea: A comparative analysis with bulbar-onset amyotrophic lateral sclerosis.

J Neurol Sci

December 2024

Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:

Facial onset sensory and motor neuronopathy (FOSMN) syndrome is a rare neurodegenerative disorder initially characterized by facial sensory deficits, which later progress to motor deficits in a rostral-caudal distribution. This study investigated the prevalence, clinical features, and prognosis of FOSMN syndrome and compared these aspects with those of bulbar-onset amyotrophic lateral sclerosis (ALS) within a single institutional cohort of motor neuron diseases. We identified four patients with FOSMN syndrome who had been misclassified as having bulbar-onset ALS, representing approximately 2 % of such ALS cases.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis(ALS) has traditionally been managed as a neuromuscular disorder. However, recent evidence suggests involvement of non-motor domains. This study aims to evaluate the impact of APOE and MAPT genotypes on the cognitive features of ALS.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Inclusions of TAR DNA binding protein of 43kDa (TDP-43) constitute the main characteristic pathology in the majority (∼97%) of amyotrophic lateral sclerosis (ALS) cases and approximately 50% of patients with frontotemporal lobar degeneration (FTLD). TDP-43 is a nuclear RNA binding protein; however, in disease, it becomes hyperphosphorylated and/or insoluble, hindering its nuclear function in maintaining RNA homeostasis. Importantly, the incidence of TDP-43 proteinopathy extends to aging brains (LATE) and may be concomitant with Alzheimer's disease (AD) neuropathological changes (LATE/AD) in up to 70% of AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!