Stathmin is a prominent destabilizer of microtubules (MTs). Extensive in vitro studies have strongly suggested that stathmin could act by sequestering tubulin and/or by binding to MT tips. In cells, the molecular mechanisms of stathmin binding to tubulin and/or MTs and its implications for the MT dynamics remain unexplored. By using immunofluorescence resonance energy transfer and fluorescence recovery after photobleaching, we analyzed the ability of stathmin and its phosphorylated forms (on Ser16, -25, -38, and -63) to interact with tubulin and MTs in A549 cells. Consistent with in vitro studies, we detected stathmin-tubulin interactions at the MT plus ends and in the cytosol. Of interest, we also observed a novel pool of stathmin bound along the MT. Expression of truncated stathmin and use of MT-stabilizing taxol further showed that the C-terminal domain of stathmin is the main contributor to this binding and that the phosphorylation state of stathmin plays a role in its binding along the MT wall. Our findings demonstrate that stathmin binds directly along the MT wall. This pool of stathmin would be readily available to participate in protofilament dissociation when the moving plus end of a depolymerizing MT reaches stathmin molecules.-Nouar, R., Breuzard, G., Bastonero, S., Gorokhova, S., Barbier, P., Devred, F., Kovacic, H., Peyrot, V. Direct evidence for the interaction of stathmin along the length and the plus end of microtubules in cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201500125R | DOI Listing |
Zhongguo Fei Ai Za Zhi
November 2024
Lung Cancer Center, West China Hospital, Sichuan University; Sichuan Lung Cancer Institute, Chengdu 610041, China.
Background: Lung cancer is one of the malignant tumors with the highest morbidity and mortality rates worldwide, seriously threatening human health. Non-small cell lung cancer (NSCLC) accounts for more than 85% of all lung cancer cases. STMN1 is a microtubule depolymerizing protein widely present in the cytoplasm and its expression level is associated with the prognosis of NSCLC patients.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA.
Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men in the United States. While PCa initially responds to androgen deprivation therapy, a significant portion progresses to castration-resistant PCa. Approximately 20-25% of these cases acquire aggressive neuroendocrine (NE) features, ultimately leading to neuroendocrine prostate cancer (NEPC).
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy.
The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.
View Article and Find Full Text PDFProstate cancer (PCa) is the second leading cause of cancer-related mortality among men in the United States. While PCa initially responds to androgen deprivation therapy, a significant portion progresses to castration-resistant PCa. Approximately 20-25% of these cases acquire aggressive neuroendocrine (NE) features, ultimately leading to neuroendocrine prostate cancer (NEPC).
View Article and Find Full Text PDFJ Neurol
December 2024
Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletions or mutations of survival of motor neuron 1 (SMN1) gene. To date, the mechanism of selective cell death of motor neurons as a hallmark of SMA is still unclear. The severity of SMA is dependent on the amount of survival motor neuron (SMN) protein, which is an essential and ubiquitously expressed protein involved in various cellular processes including regulation of cytoskeletal dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!