Cyclosporin A (CsA) and dipyridamole (DPy) are potent inhibitors of the P-glycoprotein (P-gp; ABCB1) in vitro. Their efficacy at inhibiting P-gp at the blood-brain barrier (BBB) is difficult to predict. Efficient and readily available (i.e. marketed) P-gp inhibitors are needed as probes to investigate the role of P-gp at the human BBB. In this study, the P-gp inhibition potency at the BBB of therapeutic doses of CsA or DPy was evaluated in baboons using Positron Emission Tomography (PET) imaging with [(11)C]-N-desmethyl-loperamide ([(11)C]dLop), a radiolabeled P-gp substrate. The preparation of dLop as authentic standard and [(11)C]dLop as radiotracer were revisited so as to improve their production yields. [(11)C]dLop PET imaging was performed in the absence (n=3, baseline condition) and the presence of CsA (15mg/kg/h i.v., n=3). Three animals were injected with i.v. DPy at either 0.56 or 0.96 or 2mg/kg (n=1), corresponding to the usual, maximal and twice the maximal dose in patients, respectively, administered immediately before PET. [(11)C]dLop brain kinetics as well as [(11)C]dLop kinetics and radiometabolites in arterial plasma were measured to calculate [(11)C]dLop area-under the time-activity curve from 10 to 30min in the brain (AUCbrain) and in plasma (AUCplasma). [(11)C]dLop brain uptake was described by AUCR=AUCbrain/AUCplasma. CsA as well as DPy did not measurably influence [(11)C]dLop plasma kinetics and metabolism. Baseline AUCR (0.85±0.29) was significantly enhanced in the presence of CsA (AUCR=10.8±3.6). Injection of pharmacologic dose of DPy did not enhance [(11)C]dLop brain distribution with AUCR being 1.2, 0.9 and 1.1 after administration of 0.56, 0.96 and 2mg/kg DPy doses, respectively. We used [(11)C]dLop PET imaging in baboons, a relevant in vivo model of P-gp function at the BBB, to show the P-gp inhibition potency of therapeutic dose CsA. Despite in vitro P-gp inhibition potency, usual doses DPy are not likely to inhibit P-gp function at the BBB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2016.06.005 | DOI Listing |
Int J Nanomedicine
January 2025
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Purpose: To improve the oral absorption of relugolix (RLGL), which has low oral bioavailability due to its low solubility and being a substrate of P-glycoprotein (P-gp). A solid self-microemulsifying drug delivery system of relugolix (RLGL-S-SMEDDS) was prepared and evaluated in vitro and in vivo.
Methods: The composition of the solid self-microemulsifying drug delivery system (S-SMEDDS) was selected by solubility study and pseudo-ternary phase diagram, and further optimized by Design-Expert optimization design.
Technol Cancer Res Treat
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.
Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.
Bioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences (NIH), Research Triangle Park, Durham, NC 27709, USA.
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!