Comparative theoretical kinetics and thermodynamics study on high-energy insensitive explosive 1,1-diamino-2,2-dinitroethene synthesis.

J Mol Model

Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, Republic of China.

Published: July 2016

Two synthesis methods were investigated in this study in order to explore feasible reaction pathways to obtain the target DADNE product: (1) the nitration of tetrahalogen ethene and (2) the reaction of acetamidine hydrochloride with dicarbonyl dichloride. Through theoretical simulation, the findings revealed that synthesis was possible, starting from acetamidine hydrochloride in a hydrated environment, followed by subsequent reaction routes via cyclization of the methoxy-substituted acetamidine anion intermediate with oxalyl chloride to form 2-methoxy-2-methyl-imidazolan-4,5-dione, acid-catalyzed synthesis of 2-methylene-imidazolan-4,5-dione, nitration using nitric acid to obtain 2-dinitromethylene-imidazolan-4,5-dione, and hydrolysis to produce 1,1-diamino-2,2-dinitroethene. A total energy of 1048.4 kJ mol(-1) was needed to carry out the reaction according to calculation of the energy barriers at each stage, as shown by the reaction profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-016-3024-yDOI Listing

Publication Analysis

Top Keywords

acetamidine hydrochloride
8
reaction
5
comparative theoretical
4
theoretical kinetics
4
kinetics thermodynamics
4
thermodynamics study
4
study high-energy
4
high-energy insensitive
4
insensitive explosive
4
explosive 11-diamino-22-dinitroethene
4

Similar Publications

The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae.

View Article and Find Full Text PDF

Neonicotinoids, a neuro-effective class of insecticides, are heavily applied in agricultural activities worldwide. Poultry can be exposed to neonicotinoids by several routes, but the knowledge of neonicotinoid's metabolism in poultry and its associated interspecies differences is highly limited. Hence, this study aims to investigate the species differences in metabolite formations, as well as cytochrome P450 (CYP)-dependent metabolism of four major neonicotinoid compounds, acetamiprid, imidacloprid, clothianidin, and thiamethoxam, in poultry.

View Article and Find Full Text PDF

Carbendazim and acetamidine are pesticides that widely used to control pests and diseases in oilseed rape. In this paper, a rapid, accurate and reliable method was proposed for the detection of carbendazim and acetamidine with SERS microfluidic chip technology. Ag-ps(Polystyrene microspheres) microsphere SERS substrate was prepared by spin coating and magnetron sputtering deposition of Ag.

View Article and Find Full Text PDF

Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Bis-trifluoromethylated derivatives, namely ,''-thiocarbonylbis('-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound ), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.

View Article and Find Full Text PDF

Modulating hot carrier cooling and extraction with A-site organic cations in perovskites.

J Chem Phys

March 2024

Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Hot carrier solar cells could offer a solution to achieve high efficiency solar cells. Due to the hot-phonon bottleneck in perovskites, the hot carrier lifetime could reach hundreds of ps. Such that exploring perovskites could be a good way to promote hot carrier technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!