Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18.

BMC Microbiol

Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, 9090, Melle, Belgium.

Published: June 2016

AI Article Synopsis

Article Abstract

Background: Rumen microbes metabolize 22:6n-3. However, pathways of 22:6n-3 biohydrogenation and ruminal microbes involved in this process are not known. In this study, we examine the ability of the well-known rumen biohydrogenating bacteria, Butyrivibrio fibrisolvens D1 and Butyrivibrio proteoclasticus P18, to hydrogenate 22:6n-3.

Results: Butyrivibrio fibrisolvens D1 failed to hydrogenate 22:6n-3 (0.5 to 32 μg/mL) in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Growth of B. fibrisolvens was delayed at the higher 22:6n-3 concentrations; however, total volatile fatty acid production was not affected. Butyrivibrio proteoclasticus P18 hydrogenated 22:6n-3 in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Biohydrogenation only started when volatile fatty acid production or growth of B. proteoclasticus P18 had been initiated, which might suggest that growth or metabolic activity is a prerequisite for the metabolism of 22:6n-3. The amount of 22:6n-3 hydrogenated was quantitatively recovered in several intermediate products eluting on the gas chromatogram between 22:6n-3 and 22:0. Formation of neither 22:0 nor 22:6 conjugated fatty acids was observed during 22:6n-3 metabolism. Extensive metabolism was observed at lower initial concentrations of 22:6n-3 (5, 10 and 20 μg/mL) whereas increasing concentrations of 22:6n-3 (40 and 80 μg/mL) inhibited its metabolism. Stearic acid formation (18:0) from 18:2n-6 by B. proteoclasticus P18 was retarded, but not completely inhibited, in the presence of 22:6n-3 and this effect was dependent on 22:6n-3 concentration.

Conclusions: For the first time, our study identified ruminal bacteria with the ability to hydrogenate 22:6n-3. The gradual appearance of intermediates indicates that biohydrogenation of 22:6n-3 by B. proteoclasticus P18 occurs by pathways of isomerization and hydrogenation resulting in a variety of unsaturated 22 carbon fatty acids. During the simultaneous presence of 18:2n-6 and 22:6n-3, B. proteoclasticus P18 initiated 22:6n-3 metabolism before converting 18:1 isomers into 18:0.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901502PMC
http://dx.doi.org/10.1186/s12866-016-0720-9DOI Listing

Publication Analysis

Top Keywords

proteoclasticus p18
28
226n-3
17
butyrivibrio proteoclasticus
12
226n-3 μg/ml
12
biohydrogenation 226n-3
8
butyrivibrio fibrisolvens
8
hydrogenate 226n-3
8
growth medium
8
medium autoclaved
8
autoclaved ruminal
8

Similar Publications

Sharpea azabuensis: a ruminal bacterium that produces trans-11 intermediates from linoleic and linolenic acid.

Microbiology (Reading)

July 2019

Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, Block F, Coupure Links 653, 9000 Ghent, Belgium.

To investigate the metabolism of 18:2n-6 and 18:3n-3 by pure cultures of Sharpea azabuensis, two different strains (RL 1 and ST18) were each incubated in the presence of 40 µg ml 18:2n-6 or 18:3n-3. Pure cultures of Butyrivibriofibrisolvens D1 and Butyrivibrio proteoclasticus P18 were included as control treatments. Similar to the metabolism of B.

View Article and Find Full Text PDF

Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion.

View Article and Find Full Text PDF

Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18.

BMC Microbiol

June 2016

Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, 9090, Melle, Belgium.

Background: Rumen microbes metabolize 22:6n-3. However, pathways of 22:6n-3 biohydrogenation and ruminal microbes involved in this process are not known. In this study, we examine the ability of the well-known rumen biohydrogenating bacteria, Butyrivibrio fibrisolvens D1 and Butyrivibrio proteoclasticus P18, to hydrogenate 22:6n-3.

View Article and Find Full Text PDF

Metabolism of conjugated linoleic acids and 18 : 1 fatty acids by ruminal bacteria: products and mechanisms.

Microbiology (Reading)

February 2010

Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK.

Cultures of ruminal bacteria known to metabolize unsaturated fatty acids were grown in medium containing 50 microg ml(-1) of geometric and positional isomers of conjugated linoleic acid (CLA) or 18 : 1 fatty acids and 37.4 % deuterium oxide to investigate the mechanisms responsible for fatty acid metabolism. Butyrivibrio fibrisolvens JW11 converted cis-9,trans-11-18 : 2 and trans-9,trans-11-18 : 2 to trans-11-18 : 1 as the main product, labelled at C-9, and metabolized trans-10,cis-12-18 : 2 to trans-10-18 : 1, labelled at C-13, and smaller amounts of trans-12-18 : 1 and cis-12-18 : 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!