Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes affects an increasing number of patients worldwide and is responsible for a significant rise in healthcare expenses. Imaging of β-cells in vivo is expected to contribute to an improved understanding of the underlying pathophysiology, improved diagnosis, and development of new treatment options for diabetes. Here, we describe the first radiosyntheses of [ H]-TAK875 and [ F]-TAK875 derivatives to be used as β-cell imaging probes addressing the free fatty acid receptor 1 (FFAR1/GPR40). The fluorine-labeled derivative showed similar agonistic activity as TAK875 in a functional assay. The radiosynthesis of the F-labelled tracer 2a was achieved with 16.7 ± 5.7% radiochemical yield in a total synthesis time of 60-70 min.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jlcr.3412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!