Glioblastoma multiforme (GBM) is the most common and lethal cancer of the adult brain, remaining incurable with a median survival time of only 15 months. In an effort to identify new targets for GBM diagnostics and therapeutics, recent studies have focused on molecular phenotyping of GBM subtypes. This has resulted in mounting interest in microRNAs (miRNAs) due to their regulatory capacities in both normal development and in pathological conditions such as cancer. miRNAs have a wide range of targets, allowing them to modulate many pathways critical to cancer progression, including proliferation, cell death, metastasis, angiogenesis, and drug resistance. This review explores our current understanding of miRNAs that are differentially modulated and pathologically involved in GBM as well as the current state of miRNA-based therapeutics. As the role of miRNAs in GBM becomes more well understood and novel delivery methods are developed and optimized, miRNA-based therapies could provide a critical step forward in cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971921PMC
http://dx.doi.org/10.1002/cam4.775DOI Listing

Publication Analysis

Top Keywords

glioblastoma multiforme
8
gbm well
8
gbm
5
micrornas glioblastoma
4
multiforme pathogenesis
4
pathogenesis therapeutics
4
therapeutics glioblastoma
4
multiforme gbm
4
gbm common
4
common lethal
4

Similar Publications

Multidisciplinary treatment is necessary in glioblastoma with extracerebral metastases.

Strahlenther Onkol

January 2025

Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.

Purpose: While glioblastoma is the most common malignant brain tumor in adults, extracerebral manifestations are very rare in this highly aggressive disease with poor prognosis.

Methods: We conducted a systematic literature review in the PubMed database and complemented the data by inclusion of a case treated in our clinic. In this context, we report on a 60-year-old woman with a right frontal glioblastoma, IDH wildtype, MGMT methylated.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most malignant type of glioma with a very poor prognosis. N6-methyladenosine (m6A) is well-documented to be involved in GBM progression, and FTO is a demethylase. GSTO1 is also associated with tumor progression.

View Article and Find Full Text PDF

Background: Diffuse hemispheric glioma, histone 3 (H3) G34-mutant, has been newly defined in the 2021 WHO classification of central nervous system tumors. Here we sought to define the prognostic roles of clinical, neuroimaging, pathological, and molecular features of these tumors.

Methods: We retrospectively assembled a cohort of 114 patients (median age 22 years) with diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4 and profiled the imaging, histological and molecular landscape of their tumors.

View Article and Find Full Text PDF

Aggressive resection of non-contrast-enhanced tumor provides varying benefits to glioblastoma, IDH-wildtype patients based on different clinical characteristics.

Cancer Lett

January 2025

Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Electronic address:

Supramaximal resection in glioblastoma, concerning non-contrast-enhancing (nCE) tumors, exhibited additional survival benefits. However, whether all patients can benefit from supramaximal resection of nCE tumors and the optimal resection target remains unclear, especially for the glioblastoma, IDH-wildtype under the new WHO CNS tumor classification. Clinical and surgical characteristics were collected from 155 patients with newly diagnosed glioblastoma, IDH-wildtype from the Chinese Glioma Genome Atlas, and a prospective cohort of 128 patients was enrolled for external validation.

View Article and Find Full Text PDF

Fragment based novel drug identification and its validation through use of molecular dynamics and simulations.Comparing primary microcephaly genes with glioblastoma expression profiles reveals potential oncogenes, with proteins that support growth and survival in neural stem/progenitor cells likely retaining critical roles in glioblastoma. Identifying such proteins in familial and congenital microcephalic disorders offers promising targets for brain tumor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!