Recently Apolipoprotein B mRNA editing enzyme, Catalytic Polypeptide-like 3G (APOBEC3G) biology has assumed importance because of its role in oncogenesis. In this context, the present study was addressed to understand the immune-modulatory role of APOBEC3G through its effect upon the T-cell plasticity phenomenon. Such an attempt revealed that APOBEC3G has the inherent capacity to regulate genes coding for STAT3, NF-κB, CCL5, IL-6, IL-4, IFN-γ, IL-10 and IL-17 coupled with downregulation of Treg cells within human peripheral blood mononuclear cells (PBMCs) without any noticeable influence upon CD4(+) and CD8(+) cell number. On the basis of these findings, we propose that APOBEC3G has the ability to induce T cell plasticity and modulate immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcmd.2016.04.013 | DOI Listing |
J Virol
December 2024
Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Several APOBEC3 enzymes restrict HIV-1 by deaminating cytosine to form uracil in single-stranded proviral (-)DNA. However, HIV-1 Vif counteracts their activity by inducing their proteasomal degradation. This counteraction by Vif is incomplete, as evidenced by footprints of APOBEC3-mediated mutations within integrated proviral genomes of people living with HIV-1.
View Article and Find Full Text PDFMol Cell Proteomics
May 2024
College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Electronic address:
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination-independent antiviral activity through protein and nucleic acid interactions.
View Article and Find Full Text PDFThe exact function of M1 macrophages and CXCL9 in forecasting the effectiveness of immune checkpoint inhibitors (ICIs) is still not thoroughly investigated. We investigated the potential of M1 macrophage and C-X-C Motif Chemokine Ligand 9 (CXCL9) as predictive markers for ICI efficacy, employing a comprehensive approach integrating multicohort analysis and single-cell RNA sequencing. A significant correlation between high M1 macrophage and improved overall survival (OS) and objective response rate (ORR) was found.
View Article and Find Full Text PDFbioRxiv
February 2024
University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada.
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination independent antiviral activity through protein and nucleic acid interactions.
View Article and Find Full Text PDFViruses
December 2023
Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan.
We have previously reported an HIV-1 mutant designated NL-Y226tac that expresses Vif at an ultra-low level, being replication-defective in high-APOBEC3G cells, such as H9. It carries a synonymous mutation within the splicing SA1 site relative to its parental clone. In order to determine whether a certain mutant(s) emerges during multi-infection cycles, we maintained H9 cells infected with a relatively low or high input of NL-Y226tac for extended time periods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!