Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Doxorubicin (DOX)-induced co-assembling nanomedicines (D-PNAx) with temperature-sensitive PNAx triblock polymers have been developed for regional chemotherapy against liver cancer via intratumoral administration in the present work. Owing to the formation of insoluble DOX carboxylate, D-PNAx nanomedicines showed high drug-loading and entrapment efficacy via a simple mixing of doxorubicin hydrochloride and PNAx polymers. The sustained releasing profile of D-PNA100 nanomedicines indicated that only 9.4% of DOX was released within 1day, and 60% was released during 10days. Based on DOX-induced co-assembling behavior and their temperature sensitive in-situ-forming hydrogels, D-PNA100 nanomedicines showed excellent antitumor activity against H22 tumor using intratumoral administration. In contrast to that by free DOX solution (1.13±0.04 times at 9days) and blank PNA100 (2.11±0.34 times), the tumor volume treated by D-PNA100 had been falling to only 0.77±0.13 times of original tumor volume throughout the experimental period. In vivo biodistribution of DOX indicated that D-PNA100 nanomedicines exhibited much stronger DOX retention in tumor tissues than free DOX solution via intratumoral injection. D-PNA100 nanomedicines were hopeful to be developed as new temperature sensitive in-situ-forming hydrogels via i.t. injection for regional chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2016.06.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!