The structure of amorphous materials near the interface with an ordered substrate can be affected by various characteristics of the adjoining phases, such as the lattice spacing of the adherent surface, polymer chain length, and adhesive strength. To discern the influence of each of these factors, four FCC metal lattices are examined for three chain lengths of n-alkane and van der Waals interfacial interactions are controlled by adjusting the Lennard-Jones 12-6 potential parameters. The role of interaction strength is investigated for a single chain length and substrate combination. Four nanoconfined systems are also analyzed in terms of their mechanical strength. A strong layering effect is observed near the interface for all systems. The distinctiveness of polymer layering, i.e., the maximum density and spatial extent, exhibits a logarithmic dependence on the interaction strength between polymer and substrate. Congruency with the substrate lattice parameter further enhances this effect. Moreover, the elastic modulus of the alkane phase as a function of layer thickness indicates that the effects of ordering within the structure extend beyond the immediately obvious interfacial region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b01665 | DOI Listing |
Commun Biol
January 2025
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.
View Article and Find Full Text PDFInt J Pharm
January 2025
University of Applied Sciences and Arts Northwest. Switzerland, School of Life Sciences, Institute of Pharma Technology, Hofackerstr. 30 CH-4132 Muttenz, Switzerland. Electronic address:
In recent years, deep eutectic solvents (DESs) with their outstanding solubilization properties have emerged as strong candidates for oral enabling formulations of poorly soluble drugs. This study explores the use of drug-based therapeutic DESs (THEDESs) to solubilize a poorly soluble compound with the aim of providing a fixed-dose combination of two complementary therapeutic agents. Specifically, potential anticancer effects of ibuprofen (IBU) are harnessed in a novel type of THEDES to dissolve higher amounts of abiraterone acetate (AbAc), an antitumor agent.
View Article and Find Full Text PDFAm J Trop Med Hyg
January 2025
Nutrition Research Division, icddr,b, Dhaka, Bangladesh.
Malnutrition in the early days of life is a global public health concern that affects children's growth. It results from a variety of factors, including pathogenic infections. Enterocytozoon bieneusi is a microsporidian parasite that can cause diarrhea and malnutrition in children.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China.
The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-1/2 chains using open-shell [2]triangulene molecules as building blocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!