Tea (Camellia sinensis) is a popular beverage worldwide. Drought stress (DS) is a major constraint on the growth, yield and quality of tea plants. MicroRNAs (miRNAs) play important roles in plant responses to DS. We constructed eight small RNA libraries from the drought-tolerant 'Ningzhou 2' (NZ2) and drought-susceptible 'Zhuyeqi' (ZYQ) cultivars during four stages [control (CK), the fourth day of DS, the eighth day of DS and after recovery (RC)]. A total of 268 conserved and 62 novel miRNAs were identified using small RNA sequencing. In total, 139 (52.9%) and 96 (36.0%) conserved miRNAs were differentially expressed during the four stages (P ≤ 0.05) in NZ2 and ZYQ, respectively. A total of 814 predicted target genes were identified as differentially regulated by 199 miRNAs through degradome sequencing. Among them, 201 and 218 genes were specific to the NZ2 and ZYQ cultivars, respectively, and 395 were common to both cultivars. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed the biological roles of these targets and showed that some of the targets responded to DS in a stress- and cultivar-dependent manner. Correlated expression patterns between miRNA and their targets showed that specific miRNAs target the miRNA effector Argonaute 1 (AGO1), drought signaling-related receptors and enzymes, transcription factors, and other structural and functional proteins. The predicted regulatory networks provide insights into a potential miRNA-mediated regulatory mechanism. These results will contribute to the breeding of drought-tolerant tea plants and to elucidating miRNA regulation in response to drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.12477 | DOI Listing |
BMC Plant Biol
January 2025
Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
Barley leaf stripe, a disease mainly caused by Pyrenophora graminea (P. graminea) infection, severely affects barley yield and quality and is one of the most widespread diseases in barley production. However, little is known about the underlying molecular mechanisms of leaf stripe resistance.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Lodi, 26900, Italy.
Intramammary dry-off treatment is widely considered an effective method for preventing and curing intramammary infection (IMI) in lactating cows; however, it is not commonly used in small ruminants like goats. Therefore, this study was designed to evaluate the effect of an approved cefazolin-based intramammary treatment on the milk microbiota of Alpine dairy goats during the dry and early lactation periods. Sixty goats were randomly selected based on bacteriological results and randomly allocated into the control group (CG) or the treatment group (TG).
View Article and Find Full Text PDFCell Death Discov
January 2025
School of Public Health, Guangxi Medical University, Nanning, 530021, China.
Hepatocellular carcinoma (HCC) is a global health concern, ranking as the fourth leading cause of cancer-related deaths worldwide. However, the role of piwi-interacting RNAs (piRNAs) in HCC processes has not been extensively explored. Through small RNA sequencing, our study identified a specific piRNA, pir-hsa-216911, which is highly expressed in HCC cells.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States.
We report the discovery of small molecules that target the RNA tertiary structure of self-splicing group II introns and display potent antifungal activity against yeasts, including the major public health threat . High-throughput screening efforts against a yeast group II intron resulted in an inhibitor class which was then synthetically optimized for enhanced inhibitory activity and antifungal efficacy. The most highly refined compounds in this series display strong, gene-specific antifungal activity against .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!