Topical antiseptics are widely used for wound treatment, with the goal of disrupting biofilm capacity. We analysed the effectiveness of a variety of antiseptics to inhibit various stages of biofilm formation and to remove biofilms in vitro as well as the agents' cytotoxic effects on fibroblasts. We found that the chlorine-releasing agents exhibited immediate anti-biofilm effects in the short term, with lesser cytotoxicity than agents prepared from more stable compounds, such as biguanide or modified diallyl disulfide-oxide, which, conversely, have better long-term effectiveness. Among the examined organisms, Gram-positive bacteria and Candida albicans were the most sensitive to the antiseptics, whereas Pseudomonas aeruginosa and Acinetobacter baumannii were relatively resistant to them. Formulations whose mechanisms of action involve the release of chemically active chlorine were more effective when administered in solution than the gel form, likely because of the stability of the active ingredients during or after preparation of the formula. Interestingly, hypochlorous acid and some superoxidation solutions were effective in preventing biofilm formation within a short time period and showed virtually no toxicity. Our study indicates that most antiseptics remain effective long enough to prevent biofilm formation; thus, even brief application of an antiseptic agent during initial wound treatment can lead to better wound management outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949997 | PMC |
http://dx.doi.org/10.1111/iwj.12625 | DOI Listing |
Biofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy.
View Article and Find Full Text PDFUnlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.
View Article and Find Full Text PDFUnlabelled: Members of the gut microbiome encounter a barrage of host- and microbe-derived microbiocidal factors that must be overcome to maintain fitness in the intestine. The long-term stability of many gut microbiome strains within the microbiome suggests the existence of strain-specific strategies that have evolved to foster resilience to such insults. Despite this, little is known about the mechanisms that mediate this resistance.
View Article and Find Full Text PDFMicrobes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms.
View Article and Find Full Text PDFPlant roots form associations with both beneficial and pathogenic soil microorganisms. While members of the rhizosphere microbiome can protect against pathogens, the mechanisms are poorly understood. We hypothesized that the ability to form a robust biofilm on the root surface is necessary for the exclusion of pathogens; however, it is not known if the same biofilm formation components required are necessary WCS365 is a beneficial strain that is phylogenetically closely related to an opportunistic pathogen N2C3 and confers robust protection against N2C3 in the rhizosphere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!