A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temple-Baraitser Syndrome and Zimmermann-Laband Syndrome: one clinical entity? | LitMetric

AI Article Synopsis

  • KCNH1 mutations are linked to Temple-Baraitser Syndrome (TMBTS) and Zimmermann-Laband Syndrome (ZLS), with a new case being diagnosed in a Lebanese child through whole genome sequencing.
  • The study identified three mutations, including a damaging mutation in KCNH1 that swaps Glycine for Arginine, which is known to impact the protein's structure and function.
  • The research suggests that TMBTS and ZLS may be related syndromes, with differences in symptoms likely due to additional genetic factors influencing the phenotype.

Article Abstract

Background: KCNH1 encodes a voltage-gated potassium channel that is predominantly expressed in the central nervous system. Mutations in this gene were recently found to be responsible for Temple-Baraitser Syndrome (TMBTS) and Zimmermann-Laband syndrome (ZLS).

Methods: Here, we report a new case of TMBTS diagnosed in a Lebanese child. Whole genome sequencing was carried out on DNA samples of the proband and his parents to identify mutations associated with this disease. Sanger sequencing was performed to confirm the presence of detected variants.

Results: Whole genome sequencing revealed three missense mutations in TMBTS patient: c.1042G > A in KCNH1, c.2131 T > C in STK36, and c.726C > A in ZNF517. According to all predictors, mutation in KCNH1 is damaging de novo mutation that results in substitution of Glycine by Arginine, i.e., p.(Gly348Arg). This mutation was already reported in a patient with ZLS that could affect the connecting loop between helices S4-S5 of KCNH1 with a gain of function effect.

Conclusions: Our findings demonstrate that KCNH1 mutations cause TMBTS and expand the mutational spectrum of KCNH1 in TMBTS. In addition, all cases of TMBTS were reviewed and compared to ZLS. We suggest that the two syndromes are a continuum and that the variability in the phenotypes is the result of the involvement of genetic modifiers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901505PMC
http://dx.doi.org/10.1186/s12881-016-0304-4DOI Listing

Publication Analysis

Top Keywords

temple-baraitser syndrome
8
zimmermann-laband syndrome
8
genome sequencing
8
mutations tmbts
8
kcnh1
6
tmbts
6
syndrome zimmermann-laband
4
syndrome clinical
4
clinical entity?
4
entity? background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!