A rotating disk electrode (RDE) was used to investigate the concentration loss and impedance characteristics of anodic biofilms in microbial fuel cells (MFCs). Amperometric time-current analysis revealed that at the rotation rate of 480 rpm, a maximum current density of 168 µA cm(-2) can be achieved, which was 22.2 % higher than when there was no rotation. Linear sweep voltammetry and electrochemical impedance spectroscopy tests showed that when the anodic potential was set to -300 mV vs. Ag/AgCl reference, the power densities could increase by 59.0 %, reaching 1385 mW m(-2), the anodic resistance could reduce by 19 %, and the anodic capacitance could increase by 36 %. These results concur with a more than 85 % decrease of the diffusion layer thickness. Data indicated that concentration loss, diffusion layer thickness, and the mixing velocity play important roles in anodic resistance reduction and power output of MFCs. These findings could be helpful to the design of future industrial-scale MFCs with mixed bacteria biofilms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-016-1638-1 | DOI Listing |
Psychooncology
January 2025
Department of Nursing, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.
Objective: Influenced by their life stage and socio-cultural background, young and middle-aged cancer patients in China may experience unique psychological distress. Therefore, this study investigated the severity, problems, and associated factors of psychological distress among young and middle-aged cancer patients.
Methods: We conducted a cross-sectional study on young and middle-aged cancer patients aged 18-59 who were treated at a radiotherapy center from February 2022 to September 2023.
Sci Rep
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.
This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.
View Article and Find Full Text PDFNanomedicine
January 2025
Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia. Electronic address:
The tear fluids from three healthy individuals and three patients with diabetes mellitus were examined using atomic force microscopy-infrared spectroscopy (AFM-IR) and Fourier transform infrared spectroscopy (FTIR). The dried tear samples showed different surface morphologies: the control sample had a dense network of heart-shaped dendrites, while the diabetic sample had fern-shaped dendrites. By using the AFM-IR technique we identified spatial distribution of constituents, indicating how diabetes affects the structural characteristics of dried tears.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul, 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul, 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul, 08826, Republic of Korea. Electronic address:
This study presents an advanced food detection platform that integrates filter-assisted sample preparation (FASP) with a bifunctional linker-based biosensor for on-site detection of Escherichia coli O157:H7 as a model case. FASP isolates bacteria from food samples through multi-filter preprocessing, significantly enhancing the specificity, sensitivity, and reproducibility of the subsequent biosensor analysis. This platform can detect E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!