Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000080PMC
http://dx.doi.org/10.1074/jbc.M115.690651DOI Listing

Publication Analysis

Top Keywords

plant homeodomain
8
access genetic
8
molecular mechanism
8
recognition histone
8
ing3 tumor
8
h3k4me3
5
mechanism histone
4
histone h3k4me3
4
h3k4me3 recognition
4
recognition plant
4

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Defining ortholog-specific UHRF1 inhibition by STELLA for cancer therapy.

Nat Commun

January 2025

Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.

UHRF1 maintains DNA methylation by recruiting DNA methyltransferases to chromatin. In mouse, these dynamics are potently antagonized by a natural UHRF1 inhibitory protein STELLA, while the comparable effects of its human ortholog are insufficiently characterized, especially in cancer cells. Herein, we demonstrate that human STELLA (hSTELLA) is inadequate, while mouse STELLA (mSTELLA) is fully proficient in inhibiting the abnormal DNA methylation and oncogenic functions of UHRF1 in human cancer cells.

View Article and Find Full Text PDF

RsWOX13 promotes taproot development by activating cell division and expansion and sucrose metabolism in radish.

Plant Physiol Biochem

December 2024

National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Radish is an important annual root vegetable crop, whose yield is largely dependent on taproot thickening and development. However, the regulatory network of WOXs-mediated taproot development remains poorly understood in radish. Herein, the RsWOX13 was classified in an ancient clade of the WOX gene family that harbors a conserved homeodomain.

View Article and Find Full Text PDF

The Arabidopsis Knotted1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor that operates as a central component of the gene regulatory network (GRN) controlling shoot apical meristem formation and maintenance. It regulates the expression of target genes that include transcriptional regulators associated with meristem function, particularly those involved in pluripotency and cellular differentiation, as well as genes involved in hormone metabolism and signaling. Previous studies have identified KNOX-regulated genes and their associated cis-regulatory elements in several plant species.

View Article and Find Full Text PDF

Construction of the KNOX-BELL interaction network and functional analysis of CmBLH2 under cold stress in Chrysanthemum morifolium.

Int J Biol Macromol

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China. Electronic address:

The three-amino-acid-loop-extension (TALE) homeodomain transcription factor family, including the KNOX and BELL subfamilies, is one of the largest gene families in plants. This family encodes plant-specific transcription factors that play critical roles in regulating plant growth, development, and stress responses. However, their interaction network, as well as resistant functional mechanism in is rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!