Effect of Hypoxia-regulated Polo-like Kinase 3 (Plk3) on Human Limbal Stem Cell Differentiation.

J Biol Chem

From the Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502,

Published: August 2016

Hypoxic conditions in the cornea affect epithelial function by activating Polo-like kinase 3 (Plk3) signaling and the c-Jun·AP-1 transcription complex, resulting in apoptosis of corneal epithelial cells. Hypoxic stress in the culture conditions also regulates limbal stem cell growth and fate. In this study, we demonstrate that there is a differential response of Plk3 in hypoxic stress-induced primary human limbal stem (HLS) and corneal epithelial (HCE) cells, resulting in different pathways of cell fate. We found that hypoxic stress induced HLS cell differentiation by down-regulating Plk3 activity at the transcription level, which was opposite to the effect of hypoxic stress on Plk3 activation to elicit HCE cell apoptosis, detected by DNA fragmentation and TUNEL assays. Hypoxic stress-induced increases in c-Jun phosphorylation/activation were not observed in HLS cells because Plk3 expression and activity were suppressed in hypoxia-induced HLS cells. Instead, hypoxic stress-induced HLS cell differentiation was monitored by cell cycle analysis and measured by the decrease and increase in p63 and keratin 12 expression, respectively. Hypoxic stress-induced Plk3 signaling to regulate c-Jun activity, resulting in limbal stem cell differentiation and center epithelial apoptosis, was also found in the corneas of wild-type and Plk3(-/-)-deficient mice. Our results, for the first time, reveal the differential effects of hypoxic stress on Plk3 activity in HLS and HCE cells. Instead of apoptosis, hypoxic stress suppresses Plk3 activity to protect limbal stem cells from death and to allow the process of HLS cell differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974368PMC
http://dx.doi.org/10.1074/jbc.M116.725747DOI Listing

Publication Analysis

Top Keywords

limbal stem
20
cell differentiation
20
hypoxic stress
20
hypoxic stress-induced
16
stem cell
12
hls cell
12
plk3 activity
12
hypoxic
10
plk3
9
cell
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!