The Role of Spectral Tissue Sensing During Lumbar Transforaminal Epidural Injection.

Reg Anesth Pain Med

From the *Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, Maastricht; †Philips Healthcare, Best; Departments of ‡Radiology and §Clinical Epidemiology & Medical Technology Assessment, Maastricht University Medical Center; and ‖Department of Anatomy and Embryology, Maastricht University, Maastricht; and ¶Department of Anesthesiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.

Published: March 2017

Spectral tissue sensing (STS) exploits the scattering and absorption of light by tissue. The main objective of the present study was to determine whether STS can discriminate between correct and incorrect placement of the needle tip during lumbar transforaminal epidural injection. This was a single-blind prospective observational study in 30 patients with lumbar radicular pain scheduled for lumbar transforaminal epidural injection. Spectral tissue sensing data from the needle tip were acquired along the needle trajectory at 4 predefined measurement points and compared with ultrasound, fluoroscopy, and digital subtraction angiography images. Spectral tissue sensing data contained the full spectra. The lipid and hemoglobin content at the different measurement points was also calculated, and partial least-squares discriminant analysis was used to estimate the sensitivity and specificity of STS. Spectral tissue sensing identified correct needle placement with a sensitivity of 57% and a specificity of 82%, and intraforaminal versus extraforaminal locations were identified with a sensitivity of 80% and a specificity of 71%.

Download full-text PDF

Source
http://dx.doi.org/10.1097/AAP.0000000000000419DOI Listing

Publication Analysis

Top Keywords

spectral tissue
20
tissue sensing
20
lumbar transforaminal
12
transforaminal epidural
12
epidural injection
12
injection spectral
8
sensing data
8
measurement points
8
tissue
6
sensing
5

Similar Publications

Utility of photon-counting detectors for MV-kV dual-energy computed tomography imaging.

J Med Imaging (Bellingham)

December 2024

University of Chicago, Department of Radiology, Chicago, Illinois, United States.

Purpose: High soft-tissue contrast imaging is essential for effective radiotherapy treatment. This could potentially be realized using both megavoltage and kilovoltage x-ray sources available on some therapy treatment systems to perform "MV-kV" dual-energy (DE) computed tomography (CT). However, noisy megavoltage images obtained with existing energy-integrating detectors (EIDs) are a limiting factor for clinical translation.

View Article and Find Full Text PDF

Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.

View Article and Find Full Text PDF

Estimating baselines of Raman spectra based on transformer and manually annotated data.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Agricultural Technology, Center for Precision Agriculture, Norwegian Institute of Bioeconomy Research (NIBIO), Nylinna 226 2849, Kapp, Norway.

Raman spectroscopy is a powerful and non-invasive analytical method for determining the chemical composition and molecular structure of a wide range of materials, including complex biological tissues. However, the captured signals typically suffer from interferences manifested as noise and baseline, which need to be removed for successful data analysis. Effective baseline correction is critical in quantitative analysis, as it may impact peak signature derivation.

View Article and Find Full Text PDF

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Comprehensive Mass Spectral Libraries of Human Thyroid Tissues and Cells.

Sci Data

December 2024

Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou, 310024, China.

Thyroid nodules are a common endocrine condition with an increasing incidence over the decades. Data-independent acquisition has been widely utilized in discovery proteomics to identify disease biomarkers and therapeutic targets. To analyze the thyroid disease-related proteome in a high-throughput, reproducible and reliable manner, we introduce thyroid-specific peptide spectral libraries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!