Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable owing to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and the colloidal equivalents of molecules and micelles. However, model systems that combine mutual attraction, anisotropy and deformability have not yet been realized. Here we synthesize colloidal particles that combine these three characteristics and obtain self-assembled microcapsules. We propose that mutual attraction and deformability induce directional interactions via colloidal bond hybridization. Our particles contain both mutually attractive and repulsive surface groups that are flexible. Analogously to the simplest chemical bond--in which two isotropic orbitals hybridize into the molecular orbital of H2--these flexible groups redistribute on binding. Via colloidal bond hybridization, isotropic spheres self-assemble into planar monolayers, whereas anisotropic snowman-shaped particles self-assemble into hollow monolayer microcapsules. A modest change in the building blocks thus results in much greater complexity of the self-assembled structures. In other words, these relatively simple building blocks self-assemble into markedly more complex structures than do similar particles that are isotropic or non-deformable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature17956 | DOI Listing |
J Colloid Interface Sci
January 2025
State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 China.
The dry reforming of methane (DRM) could convert CH and CO into syngas, offering potential for greenhouse gas mitigation. However, DRM catalyst sintering and carbon deposition remain major obstacles. In this study, a highly dispersed PtNi alloy@Zr-doped 3D hollow flower-like MgAlO (AMO) spheres was prepared through a hydrophobic driving strategy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Colloidal crystals of micrometer-sized colloids create prismatic structural colors through the grating diffraction of visible light. Here, we develop design rules to engineer such structural color by specifically accounting for the effect of crystal defects. The local quality and grain size of the colloidal structure are varied by performing self-assembly in the presence of a direct current (DC) electric field.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China. Electronic address:
Regulation of active sites of electrocatalysts is critical in adjusting electronic structure and catalytic selectivity towards oxygen reduction reaction (ORR) to hydrogen peroxide (HO). Herein, the CuX/CNTs (X = Se, SSe, S) hollow tetrakaidecahedron catalysts were synthesized to facilitate the electrocatalytic reduction of O to HO. The introduction of S resulted in a shift from four-electron pathway on CuSe/CNTs to two-electron process on CuS/CNTs, ultimately leading to an enhancement in HO productivity.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:
The application of ionic liquid electrolytes in ultrafast supercapacitors to achieve wide electrochemical operating windows and high electrochemical stability is highly applauded. However, the strong Coulomb interaction between ions leads to the overscreening effect and slow establishment process of the electrical double layer (EDL), which deteriorates the rate performance of supercapacitors. Herein, inspired by Coulomb's law and EDL transient dynamics, we introduce competitive hydrogen bond interactions into typical ionic-liquid electrolytes to weaken the Coulomb interaction between ions.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria.
Hypothesis: Solubilization is a fundamental process that underpins various technologies in the pharmaceutical and chemical industry. However, knowledge of the location, orientation and interactions of solubilized molecules in the micelles is still limited. We expect all-atom molecular dynamics simulations to improve the molecular-level understanding of solubilization and to enable its in silico prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!