Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect. Mutants in esx-5 and ppe10 both have impaired capsule integrity as well as reduced surface hydrophobicity. Electron microscopy, immunoblot and flow cytometry analyses demonstrated reduced amounts of surface localized proteins and glycolipids, and morphological differences in the capsular layer. Since capsular proteins secreted by the ESX-1 system are important virulence factors, we tested the effect of the mutations that cause capsular defects on virulence mechanisms. Both esx-5 and ppe10 mutants of Mycobacterium marinum were shown to be impaired in ESX-1-dependent hemolysis. In agreement with this, the ppe10 and esx5 mutants showed reduced recruitment of ubiquitin in early macrophage infection and intermediate attenuation in zebrafish embryos. These results provide a pivotal role for the ESX-5 secretion system and its substrate PPE10, in the capsular integrity of pathogenic mycobacteria. These findings open up new roads for research on the mycobacterial capsule and its role in virulence and immune modulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900558PMC
http://dx.doi.org/10.1371/journal.ppat.1005696DOI Listing

Publication Analysis

Top Keywords

pathogenic mycobacteria
8
capsule integrity
8
substrate ppe10
8
secretion system
8
esx-5 ppe10
8
esx-5
6
ppe10
6
capsule
5
esx-5 system
4
system pathogenic
4

Similar Publications

Performance of the PhoP (Rv0757/Mb0780) protein as diagnostic antigen for bovine tuberculosis.

Res Vet Sci

December 2024

Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina. Electronic address:

Bovine tuberculosis (bTB), a global zoonotic disease, causes negative effects on human and animal health. PhoP protein is a key regulator of pathogenic phenotypes in members of the Mycobacterium tuberculosis complex, which includes the causative agent of bTB. Despite extensive research on this protein focused in deciphering its regulatory role, little was explored about it as a diagnostic antigen.

View Article and Find Full Text PDF

Assessing the risk of TB progression: Advances in blood-based biomarker research.

Microbiol Res

December 2024

Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China. Electronic address:

This review addresses the significant advancements in the identification of blood-based prognostic biomarkers for tuberculosis (TB), highlighting the importance of early detection to prevent disease progression. The manuscript discusses various biomarker categories, including transcriptomic, proteomic, metabolomic, immune cell-based, cytokine-based, and antibody response-based markers, emphasizing their potential in predicting TB incidence. Despite promising results, practical application is hindered by high costs, technical complexities, and the need for extensive validation across diverse populations.

View Article and Find Full Text PDF

Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent.

View Article and Find Full Text PDF

Studies have noted the connection between Mycobacterium avium subspecies paratuberculosis (MAP) and autoimmunity. MAP is an intracellular pathogen that infects and multiplies in macrophages. To overcome the hostile environment elicited by the macrophage, MAP secretes a battery of virulence factors to neutralize the toxic effects of the macrophage.

View Article and Find Full Text PDF

Targeting IspD for Anti-infective and Herbicide Development: Exploring Its Role, Mechanism, and Structural Insights.

J Med Chem

January 2025

Helmholtz Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for Infection Research (HZI), Saar-land University, Campus E8.1, 66123Saarbrücken, Germany.

Antimicrobial resistance (AMR) and herbicide resistance pose threats to society, necessitating novel anti-infectives and herbicides exploiting untapped modes of action like inhibition of IspD, the third enzyme in the MEP pathway. The MEP pathway is essential for a wide variety of human pathogens, including , , and as well as plants. Within the current perspective, we focused our attention on the third enzyme in this pathway, IspD, offering a comprehensive summary of the reported modes of inhibition and common trends, with the goal to inspire future research dedicated to this underexplored target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!