A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidative Stress Mediates the Antiproliferative Effects of Nelfinavir in Breast Cancer Cells. | LitMetric

The discovery of the anti-proliferative activity of nelfinavir in HIV-free models has encouraged its investigation as anticancer drug. Although the molecular mechanism by which nelfinavir exerts antitumor activity is still unknown, its effects have been related to Akt inhibition. Here we tested the effects of nelfinavir on cell proliferation, viability and death in two human breast cancer cell lines and in human normal primary breast cells. To identify the mechanism of action of nelfinavir in breast cancer, we evaluated the involvement of the Akt pathway as well as the effects of nelfinavir on reactive oxygen species (ROS) production and ROS-related enzymes activities. Nelfinavir reduced breast cancer cell viability by inducing apoptosis and necrosis, without affecting primary normal breast cells. The antitumor activity of nelfinavir was related to alterations of the cell redox state, coupled with an increase of intracellular ROS production limited to cancer cells. Nelfinavir treated tumor cells also displayed a downregulation of the Akt pathway due to disruption of the Akt-HSP90 complex, and subsequent degradation of Akt. These effects resulted to be ROS dependent, suggesting that ROS production is the primary step of nelfinavir anticancer activity. The analysis of ROS-producers and ROS-detoxifying enzymes revealed that nelfinavir-mediated ROS production was strictly linked to flavoenzymes activation. We demonstrated that ROS enhancement represents the main molecular mechanism required to induce cell death by nelfinavir in breast cancer cells, thus supporting the development of new and more potent oxidizing molecules for breast cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900679PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155970PLOS

Publication Analysis

Top Keywords

breast cancer
24
ros production
16
effects nelfinavir
12
nelfinavir breast
12
cancer cells
12
nelfinavir
11
breast
8
activity nelfinavir
8
molecular mechanism
8
antitumor activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!