Backgrounds: The aim of this study was to assess the mechanical properties of the main balance tendons of the human foot in vitro reporting mechanical structural properties and mechanical material properties separately. Tendon structural properties are relevant for clinical applications, for example in orthopedic surgery to elect suitable replacements. Tendon material properties are important for engineering applications such as the development of refined constitutive models for computational simulation or in the design of synthetic materials.
Methods: One hundred uniaxial tensile tests were performed to obtain the mechanical response of the main intrinsic and extrinsic human foot tendons. The specimens were harvested from five frozen cadaver feet including: Extensor and Flexor tendons of all toes, Tibialis Anterior and Posterior tendons and Peroneus Brevis and Longus tendons.
Findings: Cross-sectional area, load and strain failure, Young's modulus and ultimate tensile stress are reported as a reference of foot tendon mechanical properties. Two different behaviors could be differentiated. Tibialis and Peroneus tendons exhibited higher values of strain failure compared to Flexor and Extensor tendons which had higher Young's modulus and ultimate tensile stress. Stress-strain tendon curves exhibited proportionality between regions. The initial strain, the toe region and the yield point corresponded to the 15, 30 and 70% of the strain failure respectively.
Interpretation: Mechanical properties of the lesser-studied human foot tendons are presented under the same test protocol for different engineering and clinical applications. The tendons that work at the inversion/eversion plane are more deformable at the same stress and strain rate than those that work at the flexion/extension plane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2016.05.014 | DOI Listing |
The aim of the study was to compare the outcomes of bone transport in treating upper- middle vs. lower- middle tibial bone defects. Sixty-two patients with tibial infected large segmental defects treated by bone transport were analyzed retrospectively and divided into distal group (lower- middle tibial bone defects and proximal transport, n=38) and proximal group (upper- middle tibial bone defects and distal transport, n=24).
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA.
Background: Advanced age brings a loss of plantar sensation, represented, for example, as higher sensation thresholds in standardized testing. This is thought to contribute to an increased risk of falls among older adults - an intuitive premise that has yet to be fully investigated, especially in the context of walking balance. The purpose of this study was to quantify the association between plantar sensation and the instability elicited by a suite of walking balance perturbations that differ in direction and context in a cohort of n = 28 older adults (73.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Anatomy, School of Life Dentistry at Niigata, Nippon Dental University, Niigata, Japan.
Background: The purpose of this study was to clarify the relationships of the tibialis anterior tendon (TAT) and peroneus longus tendon (PLT) with articular cartilage degeneration on the medial cuneiform and first metatarsal.
Methods: We examined 100 feet from 50 Japanese cadavers. The TAT was classified into 4 types based on attachment site area and number of fiber bundles: Type I, two fiber bundles with equal (within 20%) attachment site areas on the first metatarsal and medial cuneiform; Type II, with two fiber bundles and a larger (>20%) attachment site area on the medial cuneiform than on the first metatarsal; Type III, with two fiber bundles and a larger (>20%) attachment site area on the first metatarsal than on the medial cuneiform; and Type IV, with three fiber bundles.
BMC Endocr Disord
January 2025
Burn and Wound Repair Department, Fujian Medical University Union Hospital, Fuzhou, China.
Background: Diabetic foot ulcers (DFUs) are characterized by dynamic wound microbiome, the timely and accurate identification of pathogens in the clinic is required to initiate precise and individualized treatment. Metagenomic next-generation sequencing (mNGS) has been a useful supplement to routine culture method for the etiological diagnosis of DFUs. In this study, we utilized a routine culture method and mNGS to analyze the same DFU wound samples and the results were compared.
View Article and Find Full Text PDFJ Anat
January 2025
NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, USA.
We have read with great interest the paper published by the Journal of Anatomy [244(5), 2024, 861-872] on Is human height based on a Lucas sequence relationship between the foot height, tibial length, femur length and upper body length? by Paley et al. The authors show that foot height, tibial length, femur length and upper body length follow a generalized Lucas sequence. Our letter demonstrates that their result is indeed stronger, as their data follow the original, homogeneous Lucas sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!