Tunable in-situ electro-polymerization of hydrogel films for microchip-based bioanalysis.

Biomicrofluidics

Artie McFerrin Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843-3122, USA.

Published: May 2016

Electro-polymerization phenomena have been previously investigated at the macroscale in the context of producing polymeric coatings over extended surface areas. But electrical actuation also offers exquisite local control of the polymerized films' position, morphology, and thickness, suggesting compelling advantages in microfluidic-based analysis systems. Here, we introduce a microfabricated platform incorporating arrays of individually addressable on-chip electrodes capable of generating discretely positioned electro-polymerized hydrogel films inside microchannels in timescales of ∼5 min. Sequential actuation of specific electrode pairs initiates localized propagation of anchored polyacrylamide gel films and permits directed control of their size, shape, and growth rate. In addition to precise positioning of hydrogel films, obstacles, and barriers within microchannel networks, our approach makes it possible to encapsulate macromolecules within the films during polymerization, suggesting utility in a host of areas including separations, sample purification, and immunoassays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884193PMC
http://dx.doi.org/10.1063/1.4952420DOI Listing

Publication Analysis

Top Keywords

hydrogel films
12
films
5
tunable in-situ
4
in-situ electro-polymerization
4
electro-polymerization hydrogel
4
films microchip-based
4
microchip-based bioanalysis
4
bioanalysis electro-polymerization
4
electro-polymerization phenomena
4
phenomena investigated
4

Similar Publications

A new fusidic acid-loaded hydrogel film was prepared via the solvent casting technique using alginate and Aloe vera. The hydrogel films were optimized using different ratios of sodium alginate, Aloe vera, and glycerin. The films containing 10% glycerin (w/w of alginate) exhibited the best appearance.

View Article and Find Full Text PDF

Zein, a plant-based protein obtained from the endosperm of corn ( L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films.

View Article and Find Full Text PDF

Biomaterials for Corneal Regeneration.

Adv Sci (Weinh)

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.

View Article and Find Full Text PDF

Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields.

View Article and Find Full Text PDF

Biomaterial-assisted therapeutic strategies enable precise modulation to direct endogenous cellular responses and harness regenerative capabilities for nerve repair. However, achieving effective cellular engagement during nerve remodeling remains challenging. Herein, a novel composite nerve guidance conduit (NGC), the GelMA/PLys@PDA-Fe@PLCL conduit is developed by combining aligned poly(l-lactide-co-caprolactone) (PLCL) nanofibers modified with polydopamine (PDA), ferrous iron (Fe⁺), and polylysine (PLys) with aligned methacrylate-anhydride gelatin (GelMA) hydrogel nanofibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!