Objective: The migration and invasion features, which were associated with inflammatory response, acted as vital roles in the development of colon cancer. Quercetin, a bioflavonoid compound, was widely spread in vegetables and fruits. Although quercetin exerts antioxidant and anticancer activities, the molecular signaling pathways in human colon cancer cells remain unclear. Hence, the present study was conducted to investigate the suppression of quercetin on migratory and invasive activity of colon cancer and the underlying mechanism.

Materials And Methods: The effect of quercetin on cell viability, migration, and invasion of Caco-2 cells was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, wound-healing assay, and transwell chambers assay, respectively. The protein expressions of toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) p65, mitochondrial membrane potential-2 (MMP-2), and MMP-9 were detected by Western blot assay. The inflammatory factors, such as tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox-2), and interleukin-6 (IL-6), in cell supernatant were detected by enzyme-linked immunosorbent assay.

Results: The concentration of quercetin <20 μM was chosen for further experiments. Quercetin (5 μM) could remarkably suppress the migratory and invasive capacity of Caco-2 cells. The expressions of metastasis-related proteins of MMP-2, MMP-9 were decreased, whereas the expression of E-cadherin protein was increased by quercetin in a dose-dependent manner. Interestingly, the anti-TLR4 (2 μg) antibody or pyrrolidine dithiocarbamate (PDTC; 1 μM) could affect the inhibition of quercetin on cell migration and invasion, as well as the protein expressions of MMP-2, MMP-9, E-cadherin, TLR4, and NF-κB p65. In addition, quercetin could reduce the inflammation factors production of TNF-α, Cox-2, and IL-6.

Conclusion: The findings suggested for the 1(st) time that quercetin might exert its anticolon cancer activity via the TLR4- and/or NF-κB-mediated signaling pathway.

Summary: Quercetin could remarkably suppress the migratory and invasive capacity of Caco-2 cellsThe expressions of metastasis-related proteins of mitochondrial membrane potential-2 (MMP-2), MMP-9 were decreased, whereas the expression of E-cadherin protein was increased by quercetin in a dose-dependent mannerThe anti-toll-like receptor 4 (TLR4) antibody or pyrrolidine dithiocarbamate affected the inhibition of quercetin on cell migration and invasion, as well as the protein expressions of MMP-2, MMP-9, E-cadherin, TLR4, and nuclear factor-kappa B p65Quercetin could reduce the inflammation factors production of tumor necrosis factors-α, cyclooxygenase-2, and interleukin-6. Abbreviations used: MTT: 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphen yltetrazolium bromide, TLR4: Toll-like receptor 4, NF-κB: Nuclear factor-kappa B, MMP-2: Mitochondrial membrane potential-2, MMP-9: Mitochondrial membrane potential-9, TNF-α: Tumor necrosis factor-α, Cox-2: Cyclooxygenase-2, IL-6: Interleukin-6, ELISA: Enzyme-linked immunosorbent assay, PDTC: Pyrrolidine dithiocarbamate, ROS: Reactive oxygen species, DMSO: Dimethyl sulfoxide, FBS: Fetal bovine serum, DMEM: Dulbecco modified Eagle medium, OD: Optical density, IPP: Image Pro-plus, PBS: Phosphate buffered saline, SD: Standard deviation,

Anova: One-way analysis of variance, SPSS: Statistical Package for the Social Sciences, ECM: Extracellular matrix, TLRs: Toll-like receptors, LPS: Lipopolysaccharide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883086PMC
http://dx.doi.org/10.4103/0973-1296.182154DOI Listing

Publication Analysis

Top Keywords

colon cancer
16
migration invasion
12
human colon
8
caco-2 cells
8
toll-like receptor
8
quercetin
6
quercetin suppresses
4
suppresses migration
4
invasion human
4
colon
4

Similar Publications

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.

View Article and Find Full Text PDF

Background: Lymphadenectomy for rectal cancer is clearly defined by total mesorectal excision (TME). The analogous surgical strategy for the colon, the complete mesocolic excision (CME), follows the same principles of dissection in embryologically predefined planes.

Method: This narrative review initially identified key issues related to lymphadenectomy of rectal and colon cancer.

View Article and Find Full Text PDF

LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice.

Microbiol Spectr

January 2025

Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China.

Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects.

View Article and Find Full Text PDF

Angiogenesis is an intricate pathway that involves the formation of new blood capillaries from old, functioning ones. Improper angiogenesis is a feature of numerous maladies, including malignancy and autoimmune disorders. Indole-related derivatives are believed to interfere with the mitotic spindle, inhibiting the multiplication, and invasion of cancerous human cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!