Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially.

FEMS Microbiol Lett

Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland Swiss Bee Research Centre, Agroscope, Bern, Switzerland Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

Published: July 2016

Intracellular endosymbiotic bacteria are common and can play a crucial role for insect pathology. Therefore, such bacteria could be a potential key to our understanding of major losses of Western honey bees (Apis mellifera) colonies. However, the transmission and potential effects of endosymbiotic bacteria in A. mellifera and other Apis spp. are poorly understood. Here, we explore the prevalence and transmission of the genera Arsenophonus, Wolbachia, Spiroplasma and Rickettsia in Apis spp. Colonies of A. mellifera (N = 33, with 20 eggs from worker brood cells and 100 adult workers each) as well as mated honey bee queens of A. cerana, A. dorsata and A. florea (N = 12 each) were screened using PCR. While Wolbachia, Spiroplasma and Rickettsia were not detected, Arsenophonus spp. were found in 24.2% of A. mellifera colonies and respective queens as well as in queens of A. dorsata (8.3%) and A. florea (8.3%), but not in A. cerana The absence of Arsenophonus spp. from reproductive organs of A. mellifera queens and surface-sterilized eggs does not support transovarial vertical transmission. Instead, horizontal transmission is most likely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941583PMC
http://dx.doi.org/10.1093/femsle/fnw147DOI Listing

Publication Analysis

Top Keywords

endosymbiotic bacteria
12
arsenophonus spp
12
honey bees
8
mellifera colonies
8
apis spp
8
wolbachia spiroplasma
8
spiroplasma rickettsia
8
spp
5
mellifera
5
bacteria honey
4

Similar Publications

are endosymbiotic bacteria inducing various reproductive manipulations of which cytoplasmic incompatibility (CI) is the most common. CI leads to reduced embryo viability in crosses between males carrying and uninfected females or those carrying an incompatible symbiont strain. In the mosquito , the Pip causes highly complex crossing patterns.

View Article and Find Full Text PDF

Climate change-induced rise in sea surface temperatures has led to an increase in the frequency and severity of coral bleaching events, ultimately leading to the deterioration of coral reefs, globally. However, the reef-building corals have an inherent capacity to acclimatize to thermal stress on pre-exposure to high temperatures by altering their endosymbiotic Symbiodiniaceae community composition towards a thermal tolerant composition. This reorganisation may become an important tool in coral's resilience to rapid environmental change.

View Article and Find Full Text PDF

Viruses transmitted by arthropods pose a huge risk to human health. Wolbachia is an endosymbiotic bacterium that infects various arthropods and can block the viral replication cycle of several medically important viruses. As such, it has been successfully implemented in vector control strategies against mosquito-borne diseases, including Dengue virus.

View Article and Find Full Text PDF

is a common intracellular bacterial genus that infects numerous arthropods and filarial nematodes. In arthropods, it typically acts as a reproductive parasite, leading to various phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization, or male-killing. Quill mites (Acariformes: Syringophilidae) are a group of bird parasites that have recently attracted increasing interest due to the detection of unique phylogenetic lineages of endosymbiotic bacteria and potentially pathogenic taxa.

View Article and Find Full Text PDF

Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!