MicroRNA-320a promotes 5-FU resistance in human pancreatic cancer cells.

Sci Rep

Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China.

Published: June 2016

The drug-resistance of pancreatic cancer cells results in poor therapeutic effect. To predict the therapeutic effect of the chemotherapy drugs to specific patients and to reverse the resistance of pancreatic cancer cells are critical for chemotherapy of pancreatic cancer. MicroRNAs (miRNAs) have been reported to play important roles in the genesis of drug-resistance of various cancer types. There are also many advantages of miRNAs in diagnosis and therapy of disease. Although several miRNAs regulating 5-Fluorouracil (5-FU) resistance in human pancreatic cancer have been reported, the detailed molecular mechanism remains to be determined. In this study, we found that miR-320a was significantly up-regulated in 5-FU resistant pancreatic cancer cells. Over-expression of miR-320a strongly contributed to pathogenesis of pancreatic cancer, which was represented by the increased proliferation, invasion, metastasis, drug-resistance characteristics and the epithelial-to-mesenchymal transition. Furthermore, we demonstrated that miR-320a was able to bind to 3'UTR of PDCD4 mRNA, and mediated its down-regulation in 5-FU resistance of human pancreatic cancer cells. Whereas restoration of PDCD4 expression could partially attenuate the function of miR-320a in pancreatic cancer. Taken together, our study demonstrated that miR-320a played important role in regulating 5-FU resistance by targeting PDCD4 and might be developed as new therapeutic target for pancreatic cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899709PMC
http://dx.doi.org/10.1038/srep27641DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
40
cancer cells
20
5-fu resistance
16
resistance human
12
human pancreatic
12
cancer
11
pancreatic
10
demonstrated mir-320a
8
5-fu
5
resistance
5

Similar Publications

The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear.

View Article and Find Full Text PDF

Optical molecular imaging technology and its application in precise surgical navigation of liver cancer.

Theranostics

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China.

Recent innovations in medical imaging technology have placed molecular imaging techniques at the forefront of diagnostic advancements. The current research trajectory in this field aims to integrate personalized molecular data of patients and diseases with traditional anatomical imaging data, enabling more precise, non-invasive, or minimally invasive diagnostic options for clinical medicine. This article provides an in-depth exploration of the basic principles and system components of optical molecular imaging technology.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Background: JCOG1113 is a randomized phase III trial that showed non-inferiority of gemcitabine plus S-1 to gemcitabine plus cisplatin in patients with advanced biliary tract cancer. Assessment of inter-institutional heterogeneity in chemotherapy contributes to confirm generalizability and reliability of the study itself. However, there have been no studies conducted to assess the heterogeneity among participating centers in randomized phase III trials for biliary tract cancer.

View Article and Find Full Text PDF

Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!