Elucidation of the molecular mechanisms of two nanobodies that inhibit thrombin-activatable fibrinolysis inhibitor activation and activated thrombin-activatable fibrinolysis inhibitor activity.

J Thromb Haemost

Department of Pharmaceutical and Pharmacologic Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Belgium.

Published: August 2016

Unlabelled: Essentials Thrombin-activatable fibrinolysis inhibitor (TAFI) is a risk factor for cardiovascular disorders. TAFI inhibitory nanobodies represent a promising step in developing profibrinolytic therapeutics. We have solved three crystal structures of TAFI in complex with inhibitory nanobodies. Nanobodies inhibit TAFI through distinct mechanisms and represent novel profibrinolytic leads.

Summary: Background Thrombin-activatable fibrinolysis inhibitor (TAFI) is converted to activated TAFI (TAFIa) by thrombin, plasmin, or the thrombin-thrombomodulin complex (T/TM). TAFIa is antifibrinolytic, and high levels of TAFIa are associated with an increased risk for cardiovascular disorders. TAFI-inhibitory nanobodies represent a promising approach for developing profibrinolytic therapeutics. Objective To elucidate the molecular mechanisms of inhibition of TAFI activation and TAFIa activity by nanobodies with the use of X-ray crystallography and biochemical characterization. Methods and results We selected two nanobodies for cocrystallization with TAFI. VHH-a204 interferes with all TAFI activation modes, whereas VHH-i83 interferes with T/TM-mediated activation and also inhibits TAFIa activity. The 3.05-Å-resolution crystal structure of TAFI-VHH-a204 reveals that the VHH-a204 epitope is localized to the catalytic moiety (CM) in close proximity to the TAFI activation site at Arg92, indicating that VHH-a204 inhibits TAFI activation by steric hindrance. The 2.85-Å-resolution crystal structure of TAFI-VHH-i83 reveals that the VHH-i83 epitope is located close to the presumptive thrombomodulin-binding site in the activation peptide (AP). The structure and supporting biochemical assays suggest that VHH-i83 inhibits TAFIa by bridging the AP to the CM following TAFI activation. In addition, the 3.00-Å-resolution crystal structure of the triple TAFI-VHH-a204-VHH-i83 complex demonstrates that the two nanobodies can simultaneously bind to TAFI. Conclusions This study provides detailed insights into the molecular mechanisms of TAFI inhibition, and reveals a novel mode of TAFIa inhibition. VHH-a204 and VHH-i83 merit further evaluation as potential profibrinolytic therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jth.13381DOI Listing

Publication Analysis

Top Keywords

tafi activation
20
thrombin-activatable fibrinolysis
16
fibrinolysis inhibitor
16
tafi
14
molecular mechanisms
12
profibrinolytic therapeutics
12
crystal structure
12
nanobodies
8
nanobodies inhibit
8
activation
8

Similar Publications

Background:  Fibrinolysis is spatiotemporally well-regulated and greatly influenced by activated platelets and coagulation activity. Our previous real-time imaging analyses revealed that clotting commences on activated platelet surfaces, resulting in uneven-density fibrin structures, and that fibrinolysis initiates in dense fibrin regions and extends to the periphery. Despite the widespread clinical use of direct oral anticoagulants (DOACs), their impact on thrombin-dependent activation of thrombin-activatable fibrinolysis inhibitor (TAFI) and fibrinolysis remains unclear.

View Article and Find Full Text PDF

De novo discovery of cyclic peptide inhibitors of IL-11 signaling.

Bioorg Med Chem

November 2024

Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA.

Interleukin-11 (IL-11), a member of the IL-6 cytokine family, has potential pro-inflammatory and pro-fibrotic roles in pulmonary, hepatic, cardiovascular, renal and intestinal disease pathogenesis, including oncogenesis. The potential for therapeutic intervention in these disease spaces has therefore made the IL-11 signaling axis an attractive target in drug discovery, and antibody inhibitors of IL-11 signaling are currently under evaluation in Phase I/II clinical trials. While lower molecular weight small molecule and peptide inhibitors may offer the potential for improved tissue penetration, developability and manufacturing cost compared with a protein therapeutic, reports of such chemical matter in the literature are limited.

View Article and Find Full Text PDF

Objectives: To assess the effect of treatment on haemostatic parameters in patients with early rheumatoid arthritis (RA).

Methods: Patients with newly diagnosed RA started methotrexate and were randomised to additional conventional treatment, certolizumab pegol, abatacept or tocilizumab. Several biomarkers for haemostasis were analysed including parameters of the two global haemostatic assays-overall haemostatic potential (OHP) and endogenous thrombin potential (ETP), as well as single haemostatic factors-fibrinogen, prothrombin fragment 1+2 (F1+2), D-dimer, thrombin activatable fibrinolysis inhibitor (TAFI) and clot lysis time (CLT) in 24 patients at baseline, 12 and 24 weeks after the start of the treatment.

View Article and Find Full Text PDF

Atrial Fibrillation (AF) induces proinflammatory processes which incite vascular endothelial activation and dysfunction. This study seeks to examine the potential relationship between various endothelial, inflammatory, thrombotic, and renin-angiotensin-system (RAS) biomarkers in AF patients.Blood samples were from AF patients (n = 110) prospectively enrolled in this study prior to their first AF ablation.

View Article and Find Full Text PDF

Novel Deep Sea Isoindole Alkaloid FGFC1 Exhibits Its Fibrinolytic Effects by Inhibiting Thrombin-Activatable Fibrinolysis Inhibitor.

Pharmaceuticals (Basel)

October 2024

Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

Background: The thrombin-activatable fibrinolysis inhibitor (TAFI) is an important regulator in the balance between blood clot formation (coagulation) and dissolution (fibrinolysis), which is mainly activated by thrombin bonded with thrombomodulin (TM).

Methods: In this study, the investigation focused on the unique target TAFI of fungi fibrinolytic compound 1 (FGFC1), a novel fibrinolytic compound sourced from the deep sea. In this sense, the regulation of TAFI by FGFC1, in comparison to established TAFI inhibitors such as DS-1040 and PCTI in hPPP, was investigated, which was validated through the molecular docking of FGFC1 to TAFI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!