Tumors consist of a heterogeneous population of cancer cells carrying multiple genetic mutations. During the past few decades, efforts have focused on curing cancer using various methods. However, traditional cancer therapies still carry some drawbacks, such as limited application for only a few cancer types, killing of normal cells, poor specificity, and associated toxicity. To overcome these disadvantages, drug-delivery methods that emphasize biomaterials have been developed and applied to optimize cancer treatments. Hydroxyapatite (HAP) is a biocompatible inorganic material that can be applied in biomedical drug-delivery applications. This review discusses the features and properties of HAP that make it an effective biomaterial and provides a comprehensive summary of recent studies in which HAP and composites containing HAP were applied as anticancer drug carriers. We believe that HAP-based composites show great promise for cancer treatment using controlled release of therapeutic agents, leading to enhanced efficiency, selective release of drugs, and prohibition of cancer cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v33.i1.30DOI Listing

Publication Analysis

Top Keywords

anticancer drug
8
cancer
7
effective role
4
role hydroxyapatite
4
hydroxyapatite based
4
based composites
4
composites anticancer
4
drug delivery
4
delivery systems
4
systems tumors
4

Similar Publications

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function.

View Article and Find Full Text PDF

Advancements in drug discovery: integrating CADD tools and drug repurposing for PD-1/PD-L1 axis inhibition.

RSC Adv

January 2025

LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal

Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial, with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs) becoming widely prescribed.

View Article and Find Full Text PDF

Chemotherapy is widely recognized as a highly efficacious modality for cancer treatment, involving the administration of chemotherapeutic agents to target and eradicate tumor cells. Currently, oral administration stands as the prevailing and widely utilized method of delivering chemotherapy drugs. However, the majority of anti-tumor medications exhibit limited solubility and permeability, and poor stability in harsh gastrointestinal environments, thereby impeding their therapeutic efficacy for chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!