Every cell type capable of proliferation can be malignantly transformed. However, there appears to be no naturally occurring universal set of genetic mutations capable of converting every cell type to a malignant state. Any specific cell type is generally resistant to transformation by the cancer mutations accumulated by cells of different lineages, presumably due to epigenetic differences. Evidence for this idea derives from experiments in which the developmental fates of cancer cells are altered to reduce malignancy. Reprogramming cancer cells to more primitive developmental states using pluripotency factors (IPS) or somatic nuclear transfer suppresses the malignant phenotype, as does subsequent directed differentiation to mature cells of lineages distinct from the originating cell. Direct transdifferentiation to an alternative cell fate also reduces tumorigenicity. In contrast, after reprogramming, cells induced to redifferentiate toward the original tumor cell type are tumorigenic. In these types of experiments an epigenetic/genetic mismatch often results in suppression of malignancy or cell death. Elucidating the specific transcription and cell signaling network incompatibilities will identify new targets for cancer therapy. Moreover, novel strategies to induce an incompatible transdifferentiated state, in which expression of thousands of genes are altered, will prove useful in controlling malignancies that otherwise easily evolve resistance to single target-based therapeutics. Engineering small molecules, genetic vectors, cytokines, growth factors, targeted extracellular vesicles, and cell fusion will help realize transdifferentiation-based therapeutics for cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1615/CritRevOncog.v20.i5-6.190DOI Listing

Publication Analysis

Top Keywords

cell type
20
cell
10
epigenetic/genetic mismatch
8
cancer therapy
8
cells lineages
8
cancer cells
8
cancer
7
type
5
cells
5
mismatch transdifferentiation
4

Similar Publications

A Bioabsorbable Implant Seeded with Adipose-Derived Stem Cells for Adipose Regeneration.

Tissue Eng Part A

January 2025

Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.

View Article and Find Full Text PDF

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.

View Article and Find Full Text PDF

In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.

View Article and Find Full Text PDF

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!