Comparison of (+)- and (-)-Naloxone on the Acute Psychomotor-Stimulating Effects of Heroin, 6-Acetylmorphine, and Morphine in Mice.

J Pharmacol Exp Ther

Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R).

Published: August 2016

Toll-like receptor 4 (TLR4) signaling is implied in opioid reinforcement, reward, and withdrawal. Here, we explored whether TLR4 signaling is involved in the acute psychomotor-stimulating effects of heroin, 6-acetylmorphine (6-AM), and morphine as well as whether there are differences between the three opioids regarding TLR4 signaling. To address this, we examined how pretreatment with (+)-naloxone, a TLR4 active but opioid receptor (OR) inactive antagonist, affected the acute increase in locomotor activity induced by heroin, 6-AM, or morphine in mice. We also assessed the effect of pretreatment with (-)-naloxone, a TLR4 and OR active antagonist, as well as the pharmacokinetic profiles of (+) and (-)-naloxone in the blood and brain. We found that (-)-naloxone reduced acute opioid-induced locomotor activity in a dose-dependent manner. By contrast, (+)-naloxone, administered in doses assumed to antagonize TLR4 but not ORs, did not affect acute locomotor activity induced by heroin, 6-AM, or morphine. Both naloxone isomers exhibited similar concentration versus time profiles in the blood and brain, but the brain concentrations of (-)-naloxone reached higher levels than those of (+)-naloxone. However, the discrepancies in their pharmacokinetic properties did not explain the marked difference between the two isomers' ability to affect opioid-induced locomotor activity. Our results underpin the importance of OR activation and do not indicate an apparent role of TLR4 signaling in acute opioid-induced psychomotor stimulation in mice. Furthermore, there were no marked differences between heroin, 6-AM, and morphine regarding involvement of OR or TLR4 signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959094PMC
http://dx.doi.org/10.1124/jpet.116.233544DOI Listing

Publication Analysis

Top Keywords

tlr4 signaling
20
6-am morphine
16
locomotor activity
16
heroin 6-am
12
acute psychomotor-stimulating
8
psychomotor-stimulating effects
8
effects heroin
8
heroin 6-acetylmorphine
8
morphine mice
8
tlr4
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!