Differential induction of type I interferons in macaques by wild-type measles virus alone or with the hemagglutinin protein of the Edmonston vaccine strain.

Microbiol Immunol

Laboratory of Environmental Microbiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.

Published: July 2016

Measles vaccines are highly effective and safe; however, the mechanism(s) underlying their attenuation has not been well understood. In this study, type I IFNs (IFN-α and IFN-β) induction in macaques infected with measles virus (MV) strains was examined. Type I IFNs were not induced in macaques infected with wild-type MV. However, IFN-α was sharply induced in most macaques infected with recombinant wild-type MV bearing the hemagglutinin (H) protein of the Edmonston vaccine strain. These results indicate that the H protein of MV vaccine strains may have a role in MV attenuation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1348-0421.12392DOI Listing

Publication Analysis

Top Keywords

macaques infected
12
measles virus
8
hemagglutinin protein
8
protein edmonston
8
edmonston vaccine
8
vaccine strain
8
type ifns
8
induced macaques
8
differential induction
4
induction type
4

Similar Publications

Climate change is intensifying extreme weather events, with severe implications for ecosystem dynamics. A key behavioural mechanism whereby animals may cope with such events is by altering their social structure, which in turn could influence epidemic risk. However, how and to what extent natural disasters affect disease risk via changes in sociality remains unexplored in animal populations.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

We previously reported that mice immunized twice with a lipid nanoparticle vaccine comprising four monkeypox viral mRNAs raised neutralizing antibodies and antigen-specific T cells and were protected against a lethal intranasal challenge with vaccinia virus (VACV). Here we demonstrated that the mRNA vaccine also protects mice against intranasal and intraperitoneal infections with monkeypox virus and bioluminescence imaging showed that vaccination greatly reduces or prevents VACV replication and spread from intranasal, rectal, and dermal inoculation sites. A single vaccination provided considerable protection that was enhanced by boosting for at least 4 months.

View Article and Find Full Text PDF

Eilat (EILV)/chikungunya virus (CHIKV), an insect-based chimeric alphavirus was previously reported to protect mice months after a single dose vaccination. The underlying mechanisms of host protection are not clearly defined. Here, we assessed the capacity of EILV/CHIKV to induce quick and durable protection in cynomolgus macaques.

View Article and Find Full Text PDF

Zika virus (ZIKV) outbreaks occur sporadically in tropical and subtropical regions. At present, there are no licensed vaccines or specific treatments available for ZIKV. Ivermectin is approved for use in humans as an antiparasitic drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!