Lipoic acid stimulates bone formation in ovariectomized rats in a dose-dependent manner.

Can J Physiol Pharmacol

b Students Research Circle at the Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Poland.

Published: September 2016

This study was undertaken to determine the osteotropic effect of different doses of lipoic acid (LA) on the mineralization of bone tissue in female Wistar rats with experimental osteopenia induced by bilateral ovariectomy. Fifty-six rats were randomly selected and submitted to either a sham operation (n = 8) or an ovariectomy (n = 48). The ovariectomized rats were randomly placed into two control groups, treated subcutaneously with either physiological saline or 17β-estradiol in the dose of 4 μg/kg body mass per day, and four experimental groups that received LA subcutaneously in the doses of 12.5, 25, 50, and 100 mg/kg body mass per day (n = 8 in each group). After 28 days of experimental treatment, the rats were sacrificed, and body mass, total skeletal density, and body composition were recorded. Blood serum and isolated femora were stored for further analysis. Our results revealed that the osteoprotective effect of LA was dose-dependent and was observed in rats treated with 50 and 100 mg/kg of LA. Moreover, the LA applied to the ovariectomized rats in the dose of 50 mg/kg not only stopped the bone resorption, but stimulated its formation.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjpp-2015-0439DOI Listing

Publication Analysis

Top Keywords

ovariectomized rats
12
body mass
12
lipoic acid
8
rats randomly
8
mass day
8
100 mg/kg
8
rats
7
acid stimulates
4
stimulates bone
4
bone formation
4

Similar Publications

Chemogenetic modulation of parathyroid hormone secretion alleviates osteoporosis in ovariectomized rats.

Biochem Biophys Res Commun

January 2025

Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Parathyroid hormone (PTH) is critical for regulating calcium and phosphate homeostasis, and its dysregulation contributes to osteoporosis. Current methods for precise control of PTH secretion are limited. This study explores chemogenetic tools to regulate PTH secretion in parathyroid chief cells via Gq/Gi signaling.

View Article and Find Full Text PDF

The effects of estrogen depletion in female rats: differential influences on somato-motor and sensory cortices.

Biogerontology

January 2025

Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan.

Aging women experience a significant decline of ovarian hormones, particularly estrogen, following menopause, and become susceptible to cognitive and psychomotor deficits. Although the effects of estrogen depletion had been documented in the prefrontal and somatosensory cortices, its impact on somatomotor cortex, a region crucial for motor and cognitive functions, remains unclear. To explore this, we ovariectomized young adult female rats and fed subsequently with phytoestrogen-free diet and studied the effects of estrogen depletion on the somato-sensory and motor cortices.

View Article and Find Full Text PDF

Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation.

View Article and Find Full Text PDF

Background: Postmenopausal Osteoporosis (PMOP) is characterized by decreased bone mass and deterioration of bone microarchitecture, leading to increased fracture risk. Current treatments often have adverse effects, necessitating safer alternatives. Kaempferol, a flavonoid identified as a key active component of the traditional Chinese medicine Yishen Gushu formula, has shown promise in improving bone health, but its mechanisms in PMOP treatment remain unclear.

View Article and Find Full Text PDF

Estrogen significantly impacts women's health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!