Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Because the acoustic and elastic properties of bone evaluated using ultrasound-based methods have proved so useful in the direct evaluation of bone characteristics, many workers have developed methods and systems based on thein vivo measurement of velocity, attenuation, or both, of ultrasound in bone. These include the acoustic emission (AE), apparent velocity of ultrasound (AVU), and speed of sound-broadband ultrasound attenuation (SOS-BUA) methods. Bone stiffness is accepted as an effective index in the diagnosis of such bone diseases as osteoporosis. The literature contains reports of the estimation of bone stiffness from velocity (speed of sound [SOS]) and attenuation (broadband ultrasound attenuation [BUA]). The physical explanation of the methods of evaluating stiffness from the obtained values of BUA and SOS is still not clear, however. Here we propose a new diagnostic method and system based on ultrasound measurement of the stiffness of bone. The proposed method determines stiffness from the velocity of the leaky surface skimming compressional waves (LSSCWs) obtained with the microdefocusing method and the acoustic impedance obtained with the reflectance method. Thus this method can evaluate stiffness without exposing the patient to X-rays; moreover, the physical basis of the calculation of stiffness from velocity and impedance is well understood. We applied this system to the human tibiain vivo: stiffness and density in a young volunteer were successfully evaluated at 24.9 GPa and 2.01×10(3) kg/m(3), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02481235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!