SQSTM1 Mutations and Glaucoma.

PLoS One

Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America.

Published: July 2017

Glaucoma is the most common cause of irreversible blindness worldwide. One subset of glaucoma, normal tension glaucoma (NTG) occurs in the absence of high intraocular pressure. Mutations in two genes, optineurin (OPTN) and TANK binding kinase 1 (TBK1), cause familial NTG and have known roles in the catabolic cellular process autophagy. TKB1 encodes a kinase that phosphorylates OPTN, an autophagy receptor, which ultimately activates autophagy. The sequestosome (SQSTM1) gene also encodes an autophagy receptor and also is a target of TBK1 phosphorylation. Consequently, we hypothesized that mutations in SQSTM1 may also cause NTG. We tested this hypothesis by searching for glaucoma-causing mutations in a cohort of NTG patients (n = 308) and matched controls (n = 157) using Sanger sequencing. An additional 1098 population control samples were also analyzed using whole exome sequencing. A total of 17 non-synonymous mutations were detected which were not significantly skewed between cases and controls when analyzed separately, or as a group (p > 0.05). These data suggest that SQSTM1 mutations are not a common cause of NTG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898711PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156001PLOS

Publication Analysis

Top Keywords

sqstm1 mutations
8
autophagy receptor
8
ntg
5
mutations
5
sqstm1
4
glaucoma
4
mutations glaucoma
4
glaucoma glaucoma
4
glaucoma common
4
common irreversible
4

Similar Publications

HSP90 stabilizes visual cycle retinol dehydrogenase 5 in the endoplasmic reticulum by inhibiting its degradation during autophagy.

J Biol Chem

December 2024

The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The Joint National Laboratory of Antibody Drug Engineering, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, China; Kaifeng Key Lab for Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China. Electronic address:

Genetic mutations in retinol dehydrogenase 5 (RDH5), a rate-limiting enzyme of the visual cycle, is associated with nyctalopia, AMD and stationary congenital fundus albipunctatus (FA). A majority of these mutations impair RDH5 protein expression and intracellular localization. However, the regulatory mechanisms underlying RDH5 metabolism remain unclear.

View Article and Find Full Text PDF

Mutations in sequestosome 1 (SQSTM1) gene have been associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia - ALS (FTD-ALS), and very recently, progressive supranuclear palsy (PSP), paget disease of bone (PDB), distal myopathy with rimmed vacuoles (DMRV), and neurodegenerative disorders in childhood. We present a case of right temporal variant of FTD (rtvFTD) with heterozygous mutation (c.823_824del(p.

View Article and Find Full Text PDF

HSPB1 [heat shock protein family B (small) member 1] and HSPB8 are essential molecular chaperones for neuronal proteostasis, as they prevent protein aggregation. Mutant HSPB1 and HSPB8 primarily harm peripheral neurons, resulting in axonal Charcot-Marie-Tooth neuropathies (CMT2). Macroautophagy/autophagy is a shared mechanism by which HSPB1 and HSPB8 mutations cause neuronal dysfunction.

View Article and Find Full Text PDF

In a 2015 study of mutation carriers who had initial negative bone scintigraphy, we found that the rate of development of Paget's disease of bone (PDB) over 5 yr was low. We report here an additional 8-yr follow-up of this cohort, exploring the hypothesis that the rate of development of PDB would increase as the cohort aged. In the current study, 21 of 24 subjects from 2015 who had a negative bone scintiscan at baseline and at first follow-up, had a repeat scintiscan and measurement of total serum alkaline phosphatase activity.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!