Recent success at X-ray free-electron lasers has led to serial crystallography experiments staging a comeback at synchrotron sources as well. With crystal lifetimes typically in the millisecond range and the latest-generation detector technologies with high framing rates up to 1 kHz, fast sample exchange has become the bottleneck for such experiments. A micro-patterned chip has been developed from single-crystalline silicon, which acts as a sample holder for up to several thousand microcrystals at a very low background level. The crystals can be easily loaded onto the chip and excess mother liquor can be efficiently removed. Dehydration of the crystals is prevented by keeping them in a stream of humidified air during data collection. Further sealing of the sample holder, for example with Kapton, is not required. Room-temperature data collection from insulin crystals loaded onto the chip proves the applicability of the chip for macromolecular crystallography. Subsequent structure refinements reveal no radiation-damage-induced structural changes for insulin crystals up to a dose of 565.6 kGy, even though the total diffraction power of the crystals has on average decreased to 19.1% of its initial value for the same dose. A decay of the diffracting power by half is observed for a dose of = 147.5 ± 19.1 kGy, which is about 1/300 of the dose before crystals show a similar decay at cryogenic temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886986 | PMC |
http://dx.doi.org/10.1107/S1600576716006348 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
This study explores the concept of molecular orbital tuning for organic semiconductors through the use of '-diethynylated derivatives of 6,13-dihydro-6,13-diazapentacene ( and ). These novel molecules maintain the same molecular geometry and π-π stacking as their parent pentacene derivatives ( and ), as confirmed by X-ray crystallography. However, they exhibit altered frontier molecular orbitals in terms of the phase, nodal properties, and energy levels.
View Article and Find Full Text PDFCurr Opin Struct Biol
January 2025
Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK; Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Group, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK. Electronic address:
Macromolecular X-ray crystallography allows detection and characterisation of the binding of small, low-affinity chemical fragments. Here we review the utility of fragment screening for drug discovery, its potential for use in discovery science, as well as some of the distinct types of fragments that have been compiled into libraries.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins under physiological conditions remains challenging. Herein we demonstrate that [VO{(OCH)CCHOH}] (V-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.
View Article and Find Full Text PDFChem Sci
December 2024
LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!