Articular cartilage damage of the knee can cause severe morbidity. Owing to its avascular nature, articular cartilage has limited potential for self-healing and increased propensity to progress to osteoarthritis. Treatment of large, full-thickness cartilage defects is still a challenge for orthopaedic surgeons but has recently achieved high success rates with the use of osteochondral allografts. This article details our technique of osteochondral allograft transplantation for the treatment of articular cartilage defects of the knee.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886188PMC
http://dx.doi.org/10.1016/j.eats.2015.10.015DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
cartilage defects
12
osteochondral allograft
8
allograft transplantation
8
transplantation treatment
8
treatment articular
8
defects knee
8
cartilage
5
fresh osteochondral
4
articular
4

Similar Publications

Objective: Osteoarthritis is a chronic, debilitating disease that causes long-term pain and immobility. Germline deletion of Phlpp1 or administration of small molecules that inhibit Phlpp1 prevents post-traumatic osteoarthritis (PTOA) in mice. However, the chondrocyte-intrinsic role of Phlpp1 in PTOA progression is unknown.

View Article and Find Full Text PDF

3D-printed constructs deliver bioactive cargos to expedite cartilage regeneration.

J Pharm Anal

December 2024

State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China.

Cartilage is solid connective tissue that recovers slowly from injury, and pain and dysfunction from cartilage damage affect many people. The treatment of cartilage injury is clinically challenging and there is no optimal solution, which is a hot research topic at present. With the rapid development of 3D printing technology in recent years, 3D bioprinting can better mimic the complex microstructure of cartilage tissue and thus enabling the anatomy and functional regeneration of damaged cartilage.

View Article and Find Full Text PDF

Background: The growing popularity of glucagon-like peptide-1 receptor agonists (GLP-1-RAs) for weight loss could significantly impact joint preservation and arthroplasty. While this will in part be driven by the association between obesity, osteoarthritis (OA), and total joint arthroplasty (TJA), recent evidence also indicates that GLP-1-RAs may have direct joint-protective, anti-inflammatory effects.

Purpose: To evaluate the association between GLP-1-RA use and the onset and progression of hip and knee OA in an obese population.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is a degenerative joint disease that has no cure, and current therapies are intended to minimize pain. There is, therefore, a need for effective pharmacologic agents that reverse or slow the progression of joint damage. We report herein on an investigation of the effects of intra-articular injections of ganglioside sugars on the progression of OA in an experimental rabbit model.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!