Purpose: Recent studies in several tumors showed that presence of cancer stem like side population (SP) cells are responsible for chemotherapeutic drugs resistance and tumor relapse. In our present study, we have analyzed the role of SP cells in oral squamous cell carcinoma cell (OSCC) line OSCC-77.
Methods: The oral cancer cell line OSCC-77 was analyzed for the presence of SP cells by FACS using Hoechst 33342 dye exclusion method. Further the FACS-sorted SP and non-SP cells were subjected to drug resistance and sphere formation assays.
Results: We identified that the presence of SP cells in OSCC-77 cell line was 3.4%, which was reduced to 0.6% in the presence of verapamil, an inhibitor of ABC transporter. Furthermore, we showed that these SP cells were highly drug-resistant, had increased survival and were highly potent for self-renewal. Also, the clone formation efficiency of SP cells was significantly higher compared to non-SP cells (p<0.01).
Conclusion: Our data suggest that cancer stem-like SP cells of OSCC-77 cell line contribute to multidrug resistance and are highly involved in tumor relapse. However, further characterization of SP cells at gene expression level and their signaling pathways might provide new insights into the development of novel anticancer drugs.
Download full-text PDF |
Source |
---|
Forensic Sci Int Genet
January 2025
Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA.
Recent developments in single-cell analysis have revolutionized basic research and have garnered the attention of the forensic domain. Though single-cell analysis is not new to forensics, the ways in which these data can be generated and interpreted are. Modern interpretation strategies report likelihood ratios that rely on a model of the world that is a simplification of it.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan. Electronic address:
Extracellular vesicles (EVs) play a key role in cancer development and cellular homeostasis by transferring the biological cargo to recipient cells. Here, we describe steps for screening EV secretion-related genes by combining a microRNA (miRNA) library and ExoScreen, a highly sensitive EV detection technique. We also detail procedures for screening the direct target genes regulated by miRNAs.
View Article and Find Full Text PDFCell Rep
January 2025
Center for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:
The visual system adapts to maintain sensitivity and selectivity over a large range of luminance intensities. One way that the retina maintains sensitivity across night and day is by switching between rod and cone photoreceptors, which alters the receptive fields and interneuronal correlations of retinal ganglion cells (RGCs). While these adaptations allow the retina to transmit visual information to the brain across environmental conditions, the code used for that transmission varies.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Microbiology, Tumor and Cell Biology, Division of Virology and Immunology, Karolinska Institutet, 171 65 Solna, Sweden. Electronic address:
Protective antibodies against HIV-1 require unusually high levels of somatic mutations introduced in germinal centers (GCs). To achieve this, a sequential vaccination approach was proposed. Using HIV-1 antibody knockin mice with fate-mapping genes, we examined if antigen affinity affects the outcome of B cell recall responses.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:
Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!