Phenazine-1-carboxamide (PCN), a phenazine derivative, is strongly antagonistic to fungal phytopathogens. Pseudomonas chlororaphis HT66 is a PCN-producing, non-pathogenic biocontrol strain, and we obtained the mutant P. chlororaphis P3, which produces 4.7 times more PCN than the wild-type HT66 strain. To reveal the cause of PCN production enhancement in P3 and find potential factors related to PCN biosynthesis, an iTRAQ-based quantitative proteomic analysis was used to study the expression changes between the two strains. Of the 452 differentially expressed proteins, most were functionally mapped into PCN biosynthesis pathway or other related metabolisms. The upregulation of proteins, including PhzA/B, PhzD, PhzF, PhzG, and PhzH, involved in PCN biosynthesis was in agreement with the efficient production of PCN in P3. A number of proteins that function primarily in energy production, amino acid metabolism, and secondary metabolism played important roles in PCN biosynthesis. Notably, proteins involved in the uptake and conversion of phosphate, inorganic nitrogen sources, and iron improved the PCN production. Furthermore, the type VI secretion system may participate in the secretion or/and indirect biosynthetic regulation of PCN in P. chlororaphis. This study provides valuable clues to better understand the biosynthesis, excretion and regulation of PCN in Pseudomonas and also provides potential gene targets for further engineering high-yield strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895345 | PMC |
http://dx.doi.org/10.1038/srep27393 | DOI Listing |
Nat Commun
December 2024
College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.
Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).
View Article and Find Full Text PDFChilds Nerv Syst
December 2024
Department of Pediatric Neurosurgery, Medical University of Silesia, Katowice, Poland.
Introduction: Adamantinomatous craniopharyngiomas (ACP) are rare epithelial tumors, which by the WHO are classified as non-malignant tumors. Despite radical tumor regression, almost 57% of patients develop a craniopharyngioma recurrence. The pathogenesis of epithelial cancers involves a process called epithelial-mesenchymal transition (EMT), which is involved in tumor progression and its invasion, and the loss of E-cadherin is crucial for this process.
View Article and Find Full Text PDFHealthcare (Basel)
December 2024
Department of Neurology, School of Health Sciences, Medical University of Silesia, 40-752 Katowice, Poland.
Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM) are both age-related diseases. Evidence from recent studies suggests a link between them. The existence of an interaction between autonomic nervous system dysfunction and the dysregulation of glucose metabolism is one of the proposed mechanisms to explain the complicated relationship between these diseases.
View Article and Find Full Text PDFNutrients
November 2024
Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland.
Background/objectives: Minipuberty is thought to play an important role in the sexual maturation of infants. Maternal disorders during pregnancy were found to have an impact on the activity of the reproductive axis in the first year of life. This prospective, matched, cohort study was aimed at investigating whether the course of minipuberty in boys is affected by maternal gestational diabetes mellitus (GDM).
View Article and Find Full Text PDFActa Pharm Sin B
November 2024
Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
Alcoholic steatohepatitis (ASH) is a liver disease characterized by steatosis, inflammation, and necrosis of the liver tissue as a result of excessive alcohol consumption. Pregnane X receptor (PXR) is a xenobiotic nuclear receptor best known for its function in the transcriptional regulation of drug metabolism and disposition. Clinical reports suggested that the antibiotic rifampicin, a potent human PXR activator, is a contraindication in alcoholics, but the mechanism was unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!