AI Article Synopsis

  • Antibodies for West Nile virus (WNV) were found in dromedaries in various regions, but this study is the first to isolate WNV from a dromedary calf in Dubai.
  • Genome sequencing showed that this WNV belongs to lineage 1a and had unique genetic characteristics compared to other strains in the Middle East.
  • Key mutations linked to increased pathogenicity and neuroinvasiveness were identified in the virus' proteins, suggesting that dromedaries could be new reservoirs for WNV, raising concerns about potential infection sources.

Article Abstract

Although antibodies against West Nile virus (WNV) have been detected in the sera of dromedaries in the Middle East, North Africa and Spain, no WNV has been isolated or amplified from dromedary or Bactrian camels. In this study, WNV was isolated from Vero cells inoculated with both nasal swab and pooled trachea/lung samples from a dromedary calf in Dubai. Complete-genome sequencing and phylogenetic analysis using the near-whole-genome polyprotein revealed that the virus belonged to lineage 1a. There was no clustering of the present WNV with other WNVs isolated in other parts of the Middle East. Within lineage 1a, the dromedary WNV occupied a unique position, although it was most closely related to other WNVs of cluster 2. Comparative analysis revealed that the putative E protein encoded by the genome possessed the original WNV E protein glycosylation motif NYS at E154-156, which contained the N-linked glycosylation site at N-154 associated with increased WNV pathogenicity and neuroinvasiveness. In the putative NS1 protein, the A70S substitution observed in other cluster 2 WNVs and P250, which has been implicated in neuroinvasiveness, were present. In addition, the foo motif in the putative NS2A protein, which has been implicated in neuroinvasiveness, was detected. Notably, the amino-acid residues at 14 positions in the present dromedary WNV genome differed from those in most of the closely related WNV strains in cluster 2 of lineage 1a, with the majority of these differences observed in the putative E and NS5 proteins. The present study is the first to demonstrate the isolation of WNV from dromedaries. This finding expands the possible reservoirs of WNV and sources of WNV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932647PMC
http://dx.doi.org/10.1038/emi.2016.53DOI Listing

Publication Analysis

Top Keywords

wnv
12
west nile
8
nile virus
8
middle east
8
wnv isolated
8
dromedary wnv
8
implicated neuroinvasiveness
8
dromedary
5
isolation west
4
virus dromedary
4

Similar Publications

Role of extracellular vesicles in the pathogenesis of mosquito-borne flaviviruses that impact public health.

J Biomed Sci

January 2025

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.

Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.

View Article and Find Full Text PDF

Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.

View Article and Find Full Text PDF

West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Usutu virus (USUV) are zoonotic flaviviruses that cause neuroinvasive disease in humans and are maintained in overlapping avian-mosquito transmission cycles. West Nile virus and SLEV cocirculate in the United States, and WNV and USUV cocirculate in Europe.

View Article and Find Full Text PDF

[Viral-epigenetic hypothesis of Parkinson's disease etiopathogenesis.].

Adv Gerontol

January 2025

Bashkir State Medical University, 3 Lenin str., Ufa 450008, Russian Federation, e-mail:

Data accumulated in scientific literature indicate that Parkinson's disease develops after infections caused by SARS-CoV-2, West Nile, Coxsackie, St. Louis viruses, Japanese encephalitis B, hepatitis B and C, influenza A, HIV, herpes viruses, flaviviruses. Neuroinvasive West Nile viruses and HIV activate expression of alpha-synuclein.

View Article and Find Full Text PDF

Mosquito аbundance and species surveillance in St. Joseph County, Indiana, 1976-1997.

Biodivers Data J

December 2024

University of Notre Dame, Center for Research Computing, Eck Institute for Global Health, and Department of Biological Sciences, Notre Dame, United States of America University of Notre Dame, Center for Research Computing, Eck Institute for Global Health, and Department of Biological Sciences Notre Dame United States of America.

Background: Approximately twenty-one years of historical mosquito abundance and species surveillance data, collected by the University of Notre Dame and the St. Joseph County (IN) Health Department, from 1976 to 1997 are made available following a data rescue effort. St.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!