The endophytic fungal community associated with the ethnomedicinal plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 different taxa of 16 genera, of which Alternaria alternata, Colletotrichum dematium, and Stagonosporopsis sp. 2 are the most frequent colonizers. The extracts of 29 endophytic fungi displayed activities against important phytopathogenic fungi. Eight antifungal extracts were selected for chemical analysis. Forty fatty acids were identified by gas chromatography-flame-ionization detection (GC-FID) analysis. The compounds (-)-5-methylmellein and (-)-(3R)-8-hydroxy-6-methoxy-3,5-dimethyl-3,4-dihydroisocoumarin were isolated from Biscogniauxia mediterraneaEPU38CA crude extract. (-)-5-Methylmellein showed weak activity against Phomopsis obscurans, P. viticola, and Fusarium oxysporum, and caused growth stimulation of C. fragariae, C. acutatum, C. gloeosporioides, and Botrytis cinerea. (-)-(3R)-8-Hydroxy-6-methoxy-3,5-dimethyl-3,4-dihydroisocoumarin appeared slightly more active in the microtiter environment than 5-methylmellein. Our results indicate that E. purpurea lives symbiotically with different endophytic fungi, which are able to produce bioactive fatty acids and aromatic compounds active against important phytopathogenic fungi. The detection of the different fatty acids and aromatic compounds produced by the endophytic community associated with wild E. purpurea suggests that it may have intrinsic mutualistic resistance against phytopathogen attacks in its natural environment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.201500299DOI Listing

Publication Analysis

Top Keywords

endophytic fungi
12
fatty acids
12
associated wild
8
plant echinacea purpurea
8
endophytic fungal
8
community associated
8
phytopathogenic fungi
8
acids aromatic
8
aromatic compounds
8
endophytic
6

Similar Publications

Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C.

View Article and Find Full Text PDF

Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi.

View Article and Find Full Text PDF

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding.

Mycorrhiza

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.

Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.

View Article and Find Full Text PDF

Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!