Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-7003-8DOI Listing

Publication Analysis

Top Keywords

pesticides
12
bioremediation pesticides
12
biodegradation pesticides
12
perspectives fungi
8
pesticides environment
8
biodegradation bioremediation
8
review article
8
biodegradation
6
fungi bioresource
4
bioresource bioremediation
4

Similar Publications

Article Synopsis
  • Many pesticides used in agriculture can accumulate in the environment, exposing bees to multiple substances simultaneously, which is not commonly studied in research.
  • The study focused on the chronic effects of pesticide mixtures on honey bee worker's hemolymph, using concentrations found in their natural environment.
  • Results showed that acetamiprid decreased urea levels significantly, glyphosate had little effect, and tebuconazole, despite being considered safe, caused notable changes in several biochemical markers, indicating a need for further research on fungicides' impact on bees.
View Article and Find Full Text PDF

Importance of pre-mRNA splicing and its study tools in plants.

Adv Biotechnol (Singap)

February 2024

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.

Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes.

View Article and Find Full Text PDF

Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).

View Article and Find Full Text PDF

A systematic review of associations between the environment, DNA methylation, and cognition.

Environ Epigenet

December 2024

Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens' University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom.

The increasing prevalence of neurodegenerative diseases poses a significant public health challenge, prompting a growing focus on addressing modifiable risk factors of disease (e.g. physical inactivity, mental illness, and air pollution).

View Article and Find Full Text PDF

Background: Over 250 million children are developing sub-optimally due to their exposure to early life adversities. While previous studies have examined the effects of nutritional status, psychosocial adversities, and environmental pollutants on children's outcomes, little is known about their interaction and cumulative effects.

Objectives: This study aims to investigate the independent, interaction, and cumulative effects of nutritional, psychosocial, and environmental factors on children's cognitive development and mental health in urban and rural India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!