Multi-biological level assessments have become great tools to evaluate the health of aquatic ecosystems. Using this approach, a complementary study was designed to evaluate the health of yellow perch (Perca flavescens) populations in the St. Lawrence River (Quebec, Canada). In the present study, stress responses were compared at the transcriptomic, cellular, and tissue levels in yellow perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island and Lake St. Pierre (north and south). These results complement the physiological and chemical parameters as well as pathogen infection investigated in a companion paper published in the present issue. Thiobarbituric acid reactive substance (TBARS) analyses indicated the presence of oxidative stress in fish collected in the southern part of Lake St. Louis and at the downstream sites of Lake St. Pierre. High lipid peroxidation levels were found in the muscle of yellow perch caught at Beauregard Island, located downstream of the Montreal's wastewater treatment plant, suggesting an impact of the municipal effluent on redox homeostasis. Transcriptomic results indicated the down-regulation of genes related to lipid, glucose, and retinoid in southern Lake St. Pierre as well as a decrease in retinoid storage. Overall, biochemical and molecular markers indicated that the health status of yellow perch followed a decreasing gradient from upstream to downstream of the St. Lawrence River. This gradient is representative of the cumulative negative impacts of human activities on water and habitat quality along the river.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-016-7001-x | DOI Listing |
Proc Biol Sci
January 2025
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
Aquatic ecosystems are highly dynamic environments vulnerable to natural and anthropogenic disturbances. High-economic-value fisheries are one of many ecosystem services affected by these disturbances, and it is critical to accurately characterize the genetic diversity and effective population sizes of valuable fish stocks through time. We used genome-wide data to reconstruct the demographic histories of economically important yellow perch () populations.
View Article and Find Full Text PDFOne Health
December 2024
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, MN, USA.
Mar Pollut Bull
December 2024
United States Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA.
Owing to the heterogenous distribution of contaminated sediments in urban estuaries, contaminant residues, such as polychlorinated biphenyls (PCBs), in fish tissue can vary widely. To investigate the relationship between PCBs in fish tissue and heterogeneity of PCBs in sediment, we developed a geospatial Biota-Sediment Accumulation Factor (BSAF) model for an urban estuary. The model predicts whole fish total PCB residues at a scale of 0.
View Article and Find Full Text PDFJ Fish Biol
November 2024
Canadian Rivers Institute, Fredericton, New Brunswick, Canada.
Novel introductions of largemouth bass, Micropterus salmoides, often cause negative impacts on endemic populations of prey fishes and interspecific competitors. Although many studies have investigated trophic interactions between M. salmoides and smallmouth bass, Micropterus dolomieu, few have included chain pickerel, Esox niger, as a competitor despite similarities in their habitat use.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55108, United States of America. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!