During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This 'nodal flow' is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894641PMC
http://dx.doi.org/10.1371/journal.pgen.1006070DOI Listing

Publication Analysis

Top Keywords

flow
9
fluid flow
8
pkd1l1
8
asymmetric gene
8
gene expression
8
response flow
8
nodal
5
genetic
4
genetic analysis
4
analysis reveals
4

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Background: To investigate the effect of Midnight-noon Ebb-flow combined with five-element music therapy in the continuous nursing of patients with chronic wounds.

Methods: From March 2022 to November 2023, we recruited 50 eligible chronic wound patients and randomly divided them into two groups according to a random number table: the experimental group (n = 25) and the control group (n = 25). The control group was treated with conventional nursing measures.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Comprehensive Non-invasive Versus Invasive Approach to Evaluate Cardiac Allograft Vasculopathy in Heart Transplantation: The CCTA-HTx Study.

Circ Cardiovasc Imaging

January 2025

Cardiovascular Center Aalst, Onze-Lieve-Vrouwziekenhuis (OLV) Clinic, Aalst, Belgium (M. Belmonte, P.P., M.M.V., M. Beles, H.O., R.S., G.E., M.S., R.D., W.H., J.V.K., J.B., M.V.).

Background: Coronary computed tomography angiography (CCTA) is emerging as a valuable tool for noninvasive surveillance of cardiac allograft vasculopathy (CAV) in patients with heart transplant (HTx). We assessed the diagnostic performance of a comprehensive CCTA-based approach compared with the invasive reference, which includes invasive coronary angiography, intravascular ultrasound, and fractional flow reserve, for detecting CAV.

Methods: This was a multicenter prospective study including 37 patients with HTx who underwent CCTA, invasive coronary angiography, intravascular ultrasound, and fractional flow reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!