AI Article Synopsis

  • Thermal desorption is vital for analyzing VOCs in exhaled breath, but storage of adsorbent tube samples can introduce artefacts that complicate breath sampling methodologies.
  • A study was conducted over 12.5 months using breath samples stored at -80 °C, revealing that storage artefacts become noticeable after six months, affecting 27% of VOCs, particularly endogenous compounds.
  • The research concluded that it's best to limit storage time to a maximum of 1.5 months to maintain the integrity of 94% of the VOCs, suggesting careful consideration of storage duration in future analyses.

Article Abstract

Thermal desorption is used extensively in exhaled breath volatile organic compound (VOC) analysis, and it is often necessary to store the adsorbent tube samples before analysis. The possible introduction of storage artefacts is an important potential confounding factor in the development of standard methodologies for breath sampling and analysis. The stability of VOCs trapped from breath samples onto a dual bed Tenax(®) TA:Carbograph adsorbent tube and stored  -80°C was studied over 12.5 month. 25 samples were collected from a single male participant over 3 h and then stored at  -80 °C. Randomly selected adsorbent tubes were subsequent analysed by thermal desorption-gas chromatography-mass spectrometry at 5 times points throughout the 12.5 month of the study. Toluene-d8, decane-d22 and hexadecane-d34 internal standards were used to manage the instrument variability throughout the duration of the study. A breath-matrix consisting of 161 endogenous and 423 exogenous VOC was created. Iterative orthogonal partial least squared discriminant analysis (OPLS-DA) and principal components analysis (PCA) indicated that it was not possible to detect storage artefacts at 1.5 month storage. By 6 month storage artefacts were discernible with significant changes observed for 27% of the recovered VOC. Endogenous VOC were observed to be more susceptible to storage. A paired two-tailed t-test on the endogenous compounds indicated that the maximum storage duration under these conditions was 1.5 month with 94% of the VOCs stable. This study indicates that a prudent approach is best adopted for the storage of adsorbent samples; storage times should be minimised, and storage time examined as a possible discriminatory factor in multivariate analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7155/10/2/026011DOI Listing

Publication Analysis

Top Keywords

storage artefacts
12
storage
9
stored at  -80
8
volatile organic
8
exhaled breath
8
adsorbent tube
8
125 month
8
month storage
8
analysis
6
adsorbent
5

Similar Publications

Most current research in cloud forensics is focused on tackling the challenges encountered by forensic investigators in identifying and recovering artifacts from cloud devices. These challenges arise from the diverse array of cloud service providers as each has its distinct rules, guidelines, and requirements. This research proposes an investigation technique for identifying and locating data remnants in two main stages: artefact collection and evidence identification.

View Article and Find Full Text PDF

It is challenging to image structures in liquids for electron microscopy (EM); thus, low-temperature imaging has been developed, initially for aqueous systems. Organic liquids (OLs) are widely used as dispersants, although their cryogenic EM (cryo-EM) imaging is less common than that of aqueous systems. This is because the basic properties (e.

View Article and Find Full Text PDF

Exhaled breath volatile organic compounds (VOCs) are often collected and stored in sorbent tubes before thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. Information about the stability of VOCs during storage is needed to account for potential artifacts and monitor for losses. Additionally, information about the stability of VOC standards in solution is required to assess their performance as quality control and internal standards.

View Article and Find Full Text PDF

Measurement of Sorption Isotherms to Guide Mixed Display of Archaeological Iron, Bone, and Glass.

Materials (Basel)

December 2024

English Heritage, Ranger's House, Chesterfield Walk, London SE10 8QX, UK.

This study examines the preservation challenges of archaeological iron, bone, and glass within shared environments focusing on material-specific degradation mechanisms. The relative humidity (RH) requirements for these materials can vary significantly. Iron presents distinct stability groups at specific RH thresholds, albeit levels below 30% RH are recommended for sensitive artefacts.

View Article and Find Full Text PDF

The separation of diffraction effects from phase contrast is a major challenge for differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). The application of electron beam precession has previously been proven successful in homogenizing the direct beam and improving the imaging of both long-range electric and magnetic fields. However, magnetic STEM-DPC imaging performed in a low magnification (LM) STEM mode suffers from significant aberrations of the probe forming lens and the consequent impediment of small precession angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!