There is a paucity of urban meteorological observations worldwide, hindering progress in understanding and mitigating urban meteorological hazards and extremes. High quality urban datasets are required to monitor the impacts of climatological events, whilst providing data for evaluation of numerical models. The Birmingham Urban Climate Laboratory was established as an exemplar network to meet this demand for urban canopy layer observations. It comprises of an array of 84 wireless air temperature sensors nested within a coarser array of 24 automatic weather stations, with observations available between June 2012 and December 2014. data routinely underwent quality control, follows the ISO 8601 naming format and benefits from extensive site metadata. The data have been used to investigate the structure of the urban heat island in Birmingham and its associated societal and infrastructural impacts. The network is now being repurposed into a testbed for the assessment of crowd-sourced and satellite data, but the original dataset is now available for further analysis, and an open invitation is extended for its academic use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896132PMC
http://dx.doi.org/10.1038/sdata.2016.38DOI Listing

Publication Analysis

Top Keywords

urban meteorological
12
birmingham urban
8
urban climate
8
urban
7
climate laboratory-a
4
laboratory-a high
4
high density
4
density urban
4
meteorological dataset
4
dataset 2012-2014
4

Similar Publications

Heat extremes become increasingly frequent and severe, posing adverse risks to public health and environment. Previous research on extreme heat mostly used meteorological observations or reanalysis data, which cannot well capture detailed spatial patterns. This study developed a seamless air temperature (T) dataset from remote sensing data to characterize the spatio-temporal variations of heat extremes in the Yangtze River Delta (YRD) from 2001 to 2023.

View Article and Find Full Text PDF

Integrating the updated HONO formation mechanism to better understand urban O formation chemistry.

Environ Pollut

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

As a vital precursor of hydroxyl radicals (OH), atmospheric nitrous acid (HONO) plays a significant role in tropospheric chemistry and the production of secondary pollutants. However, knowledge of its sources remains insufficient. To comprehensively investigate the HONO chemistry in polluted cities and alleviate the O pollution, based on a comprehensive HONO-related field campaign in Zibo City, on the North China Plain, the parameterized formulas of additional HONO sources were validated in a box model (based on the default MCMv3.

View Article and Find Full Text PDF

The capacity of human interventions to regulate PM concentration has substantially improved in China.

Environ Int

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

The rapid urbanization in China has brought about serious air pollution problems, which are likely to persist for a considerable period as the urbanization process continues. In urban areas, the spatial distribution of air pollutants represented by PM has been proved mainly affected by emission, urban landscape pattern (short as ULP), as well as meteorological conditions. However, the contributions of these factors can seriously vary with different periods of urban development.

View Article and Find Full Text PDF

Sources of PM exposure and health benefits of clean air actions in Shanghai.

Environ Int

January 2025

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Estimating PM exposure and its health impacts in cities involves large uncertainty due to the limitations of model resolutions. Consequently, attributing the sources of PM-related health impacts at the city level remains challenging. We characterize the health impacts associated with chronic PM exposure and anthropogenic emissions in Shanghai using a chemical transport model (GEOS-Chem) and its adjoint.

View Article and Find Full Text PDF

Pollution characteristics and potential sources of Peroxyacetyl Nitrate in a petrochemical industrialized City, Northwest China.

Chemosphere

January 2025

Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.

Peroxyacetyl Nitrate (CHC(O)ONO, PAN), a typical secondary product of photochemical reactions, is well known to be a better photochemical indicator due to the only secondary photochemical source in the troposphere. Studies on PAN pollution are sparse in northwest China, resulting in a limited understanding of photochemical pollution in recent years. Herein, the measurement of PAN, O, volatile organic compounds (VOCs), NO, other related species, and meteorological parameters were conducted from May 1 to August 31, 2022, at an urban site in Lanzhou.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!