Increases in agricultural conversion are leading to declines in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these changes affect pollinator diversity. Land use types were categorized within 300 m and 3 km radii of pollinator sampling locations in Brookings County, SD. Pollinator abundance and species richness were regressed on the proportion of the landscape dedicated to row crops, grass and pasture, forage crops, small grains, and aquatic habitats using variance components modeling. Row crops had a negative effect on bee abundance at 300 m, after fixed effects modeling accounted for outliers skewing this relationship. At 3 km, corn positively affected bee abundance and richness, while soybean acreage decreased species richness. The landscape matrix of outlying sites consisted of large monocultured areas with few alternative habitat types available, leading to inflated populations of Melissodes and Halictidae. Syrphids had a positive parabolic relationship between diversity and row crops, indicating potential for competitive exclusion from intermediate landscapes. Unlike other studies, landscape diversity within 300 m was not found to significantly benefit pollinator diversity. Within especially agriculturally developed areas of the region, high abundances of pollinators suggest selection for a few dominant species. There was no effect of forage crops or aquatic habitats on pollinator diversity, indicating that less highly managed areas still represent degraded habitat within the landscape. Incorporating pollinator-friendly crops at the farm level throughout the region is likely to enhance pollinator diversity by lessening the negative effects of large monocultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ee/nvw066 | DOI Listing |
Glob Chang Biol
January 2025
Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.
View Article and Find Full Text PDFActa Parasitol
January 2025
ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
Purpose: Bats constitute 20% of all mammal species, playing a vital role in ecosystem health as pollinators, seed dispersers, and regulators of insect populations. However, these animals can also be reservoirs for infectious agents, including viruses, bacteria, and enteroparasites such as Cryptosporidium spp., Giardia duodenalis, and Balantioides coli, raising questions about their role in the epidemiology of these agents.
View Article and Find Full Text PDFAnn Bot
January 2025
CEFE, University of Montpellier, CNRS, EPHE, IRD, CEDEX 5, 34293 Montpellier, France.
Background And Aims: The currently recognized diversity of pollination strategies requires pollination syndromes to be updated. Described a decade ago, kleptomyiophily is a deceptive pollination system in which plants exploit the nutrient-seeking behavior of females of kleptoparasitic flies (Chloropidae and Milichiidae) by olfactorily mimicking their insect host. Such a pollination system was already hypothesized for pollination by biting midges (Ceratopogonidae) but has never been formalized.
View Article and Find Full Text PDFFront Microbiol
January 2025
Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany.
Introduction: The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica.
Despite the widely recognized role of pollinators in ecosystem services, we currently have a poor understanding of the contribution of Natural Protected Areas neighboring agricultural landscapes to crop pollinator diversity and plant-pollinator interactions. Here, we conducted monthly surveys over a period of one year to study the diversity of insect visitors in dominant fruit crops-avocado, plum, apple, and blackberry-and used pollen DNA metabarcoding to characterize the community of plant sources in and around low-intensive farmland bordered by protected montane forest in Costa Rica. We found that crops and native plants had distinct communities of flower visitors, suggesting the presence of fine-scale habitat differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!