Unlabelled: The synthesis and characterization of an

Nad(p)h: quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload "cargo" molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr03525fDOI Listing

Publication Analysis

Top Keywords

nqo1 enzyme
12
oxidoreductase nqo1
8
enzyme responsive
8
responsive nanocarrier
8
nanocarrier based
8
based mesoporous
8
mesoporous silica
8
silica nanoparticles
8
drug delivery
8
surface msnps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!